| author | paulson |
| Tue, 26 Jun 2001 16:54:39 +0200 | |
| changeset 11380 | e76366922751 |
| parent 11317 | 7f9e4c389318 |
| permissions | -rw-r--r-- |
(* Title: ZF/AC/recfunAC16.thy ID: $Id$ Author: Krzysztof Grabczewski A recursive definition used in the proof of WO2 ==> AC16 *) recfunAC16 = Cardinal + Epsilon + constdefs recfunAC16 :: [i, i, i, i] => i "recfunAC16(f,fa,i,a) == transrec2(i, 0, %g r. if(\\<exists>y \\<in> r. fa`g \\<subseteq> y, r, r Un {f`(LEAST i. fa`g \\<subseteq> f`i & (\\<forall>b<a. (fa`b \\<subseteq> f`i --> (\\<forall>t \\<in> r. ~ fa`b \\<subseteq> t))))}))" end