(* Title: Pure/sign.ML
ID: $Id$
Author: Lawrence C Paulson and Markus Wenzel
Logical signature content: naming conventions, concrete syntax, type
signature, polymorphic constants.
*)
signature SIGN_THEORY =
sig
val add_defsort: string -> theory -> theory
val add_defsort_i: sort -> theory -> theory
val add_types: (bstring * int * mixfix) list -> theory -> theory
val add_typedecls: (bstring * string list * mixfix) list -> theory -> theory
val add_nonterminals: bstring list -> theory -> theory
val add_tyabbrs: (bstring * string list * string * mixfix) list -> theory -> theory
val add_tyabbrs_i: (bstring * string list * typ * mixfix) list -> theory -> theory
val add_syntax: (bstring * string * mixfix) list -> theory -> theory
val add_syntax_i: (bstring * typ * mixfix) list -> theory -> theory
val add_modesyntax: Syntax.mode -> (bstring * string * mixfix) list -> theory -> theory
val add_modesyntax_i: Syntax.mode -> (bstring * typ * mixfix) list -> theory -> theory
val del_modesyntax: Syntax.mode -> (bstring * string * mixfix) list -> theory -> theory
val del_modesyntax_i: Syntax.mode -> (bstring * typ * mixfix) list -> theory -> theory
val add_consts: (bstring * string * mixfix) list -> theory -> theory
val add_consts_i: (bstring * typ * mixfix) list -> theory -> theory
val add_trfuns:
(string * (ast list -> ast)) list *
(string * (term list -> term)) list *
(string * (term list -> term)) list *
(string * (ast list -> ast)) list -> theory -> theory
val add_trfunsT:
(string * (bool -> typ -> term list -> term)) list -> theory -> theory
val add_advanced_trfuns:
(string * (Proof.context -> ast list -> ast)) list *
(string * (Proof.context -> term list -> term)) list *
(string * (Proof.context -> term list -> term)) list *
(string * (Proof.context -> ast list -> ast)) list -> theory -> theory
val add_advanced_trfunsT:
(string * (Proof.context -> bool -> typ -> term list -> term)) list -> theory -> theory
val add_tokentrfuns:
(string * string * (string -> output * int)) list -> theory -> theory
val add_mode_tokentrfuns: string -> (string * (string -> output * int)) list
-> theory -> theory
val add_trrules: (xstring * string) Syntax.trrule list -> theory -> theory
val del_trrules: (xstring * string) Syntax.trrule list -> theory -> theory
val add_trrules_i: ast Syntax.trrule list -> theory -> theory
val del_trrules_i: ast Syntax.trrule list -> theory -> theory
val add_path: string -> theory -> theory
val parent_path: theory -> theory
val root_path: theory -> theory
val absolute_path: theory -> theory
val local_path: theory -> theory
val no_base_names: theory -> theory
val qualified_names: theory -> theory
val sticky_prefix: string -> theory -> theory
val set_policy: (string -> bstring -> string) * (string list -> string list list) ->
theory -> theory
val restore_naming: theory -> theory -> theory
end
signature SIGN =
sig
val rep_sg: theory ->
{naming: NameSpace.naming,
syn: Syntax.syntax,
tsig: Type.tsig,
consts: Consts.T}
val naming_of: theory -> NameSpace.naming
val base_name: string -> bstring
val full_name: theory -> bstring -> string
val full_name_path: theory -> string -> bstring -> string
val declare_name: theory -> string -> NameSpace.T -> NameSpace.T
val syn_of: theory -> Syntax.syntax
val tsig_of: theory -> Type.tsig
val classes_of: theory -> Sorts.algebra
val all_classes: theory -> class list
val super_classes: theory -> class -> class list
val defaultS: theory -> sort
val subsort: theory -> sort * sort -> bool
val of_sort: theory -> typ * sort -> bool
val witness_sorts: theory -> sort list -> sort list -> (typ * sort) list
val universal_witness: theory -> (typ * sort) option
val all_sorts_nonempty: theory -> bool
val typ_instance: theory -> typ * typ -> bool
val typ_equiv: theory -> typ * typ -> bool
val typ_match: theory -> typ * typ -> Type.tyenv -> Type.tyenv
val typ_unify: theory -> typ * typ -> Type.tyenv * int -> Type.tyenv * int
val is_logtype: theory -> string -> bool
val consts_of: theory -> Consts.T
val const_constraint: theory -> string -> typ option
val the_const_constraint: theory -> string -> typ
val const_type: theory -> string -> typ option
val the_const_type: theory -> string -> typ
val declared_tyname: theory -> string -> bool
val declared_const: theory -> string -> bool
val const_monomorphic: theory -> string -> bool
val const_syntax_name: theory -> string -> string
val const_typargs: theory -> string * typ -> typ list
val const_instance: theory -> string * typ list -> typ
val class_space: theory -> NameSpace.T
val type_space: theory -> NameSpace.T
val const_space: theory -> NameSpace.T
val intern_class: theory -> xstring -> string
val extern_class: theory -> string -> xstring
val intern_type: theory -> xstring -> string
val extern_type: theory -> string -> xstring
val intern_const: theory -> xstring -> string
val extern_const: theory -> string -> xstring
val intern_sort: theory -> sort -> sort
val extern_sort: theory -> sort -> sort
val intern_typ: theory -> typ -> typ
val extern_typ: theory -> typ -> typ
val intern_term: theory -> term -> term
val extern_term: (string -> xstring) -> theory -> term -> term
val intern_tycons: theory -> typ -> typ
val pretty_term': Proof.context -> Syntax.syntax -> (string -> xstring) -> term -> Pretty.T
val pretty_term: theory -> term -> Pretty.T
val pretty_typ: theory -> typ -> Pretty.T
val pretty_sort: theory -> sort -> Pretty.T
val pretty_classrel: theory -> class list -> Pretty.T
val pretty_arity: theory -> arity -> Pretty.T
val string_of_term: theory -> term -> string
val string_of_typ: theory -> typ -> string
val string_of_sort: theory -> sort -> string
val string_of_classrel: theory -> class list -> string
val string_of_arity: theory -> arity -> string
val pp: theory -> Pretty.pp
val arity_number: theory -> string -> int
val arity_sorts: theory -> string -> sort -> sort list
val certify_class: theory -> class -> class
val certify_sort: theory -> sort -> sort
val certify_typ: theory -> typ -> typ
val certify_typ_mode: Type.mode -> theory -> typ -> typ
val certify': bool -> Pretty.pp -> bool -> Consts.T -> theory -> term -> term * typ * int
val certify_term: theory -> term -> term * typ * int
val certify_prop: theory -> term -> term * typ * int
val cert_term: theory -> term -> term
val cert_prop: theory -> term -> term
val no_frees: Pretty.pp -> term -> term
val no_vars: Pretty.pp -> term -> term
val cert_def: Pretty.pp -> term -> (string * typ) * term
val read_class: theory -> xstring -> class
val read_arity: theory -> xstring * string list * string -> arity
val cert_arity: theory -> arity -> arity
val get_sort: theory ->
(indexname -> sort option) -> (indexname * sort) list -> indexname -> sort
val read_def_typ: theory * (indexname -> sort option) -> string -> typ
val read_typ: theory -> string -> typ
val read_typ_syntax: theory -> string -> typ
val read_typ_abbrev: theory -> string -> typ
val read_tyname: theory -> string -> typ
val read_const: theory -> string -> term
val read_def_terms': Pretty.pp -> (string -> bool) -> Syntax.syntax -> Consts.T ->
(string -> string option) -> Proof.context ->
(indexname -> typ option) * (indexname -> sort option) ->
Name.context -> bool -> (string * typ) list -> term list * (indexname * typ) list
val read_def_terms:
theory * (indexname -> typ option) * (indexname -> sort option) ->
string list -> bool -> (string * typ) list -> term list * (indexname * typ) list
val simple_read_term: theory -> typ -> string -> term
val read_term: theory -> string -> term
val read_prop: theory -> string -> term
val add_consts_authentic: (bstring * typ * mixfix) list -> theory -> theory
val add_notation: Syntax.mode -> (term * mixfix) list -> theory -> theory
val add_abbrev: string -> bstring * term -> theory -> (term * term) * theory
include SIGN_THEORY
val add_const_constraint: xstring * string option -> theory -> theory
val add_const_constraint_i: string * typ option -> theory -> theory
val primitive_class: string * class list -> theory -> theory
val primitive_classrel: class * class -> theory -> theory
val primitive_arity: arity -> theory -> theory
val hide_classes: bool -> xstring list -> theory -> theory
val hide_classes_i: bool -> string list -> theory -> theory
val hide_types: bool -> xstring list -> theory -> theory
val hide_types_i: bool -> string list -> theory -> theory
val hide_consts: bool -> xstring list -> theory -> theory
val hide_consts_i: bool -> string list -> theory -> theory
val hide_names: bool -> string * xstring list -> theory -> theory
val hide_names_i: bool -> string * string list -> theory -> theory
end
structure Sign: SIGN =
struct
(** datatype sign **)
datatype sign = Sign of
{naming: NameSpace.naming, (*common naming conventions*)
syn: Syntax.syntax, (*concrete syntax for terms, types, sorts*)
tsig: Type.tsig, (*order-sorted signature of types*)
consts: Consts.T}; (*polymorphic constants*)
fun make_sign (naming, syn, tsig, consts) =
Sign {naming = naming, syn = syn, tsig = tsig, consts = consts};
structure SignData = TheoryDataFun
(
type T = sign;
val copy = I;
fun extend (Sign {syn, tsig, consts, ...}) =
make_sign (NameSpace.default_naming, syn, tsig, consts);
val empty =
make_sign (NameSpace.default_naming, Syntax.basic_syn, Type.empty_tsig, Consts.empty);
fun merge pp (sign1, sign2) =
let
val Sign {naming = _, syn = syn1, tsig = tsig1, consts = consts1} = sign1;
val Sign {naming = _, syn = syn2, tsig = tsig2, consts = consts2} = sign2;
val naming = NameSpace.default_naming;
val syn = Syntax.merge_syntaxes syn1 syn2;
val tsig = Type.merge_tsigs pp (tsig1, tsig2);
val consts = Consts.merge (consts1, consts2);
in make_sign (naming, syn, tsig, consts) end;
);
fun rep_sg thy = SignData.get thy |> (fn Sign args => args);
fun map_sign f = SignData.map (fn Sign {naming, syn, tsig, consts} =>
make_sign (f (naming, syn, tsig, consts)));
fun map_naming f = map_sign (fn (naming, syn, tsig, consts) => (f naming, syn, tsig, consts));
fun map_syn f = map_sign (fn (naming, syn, tsig, consts) => (naming, f syn, tsig, consts));
fun map_tsig f = map_sign (fn (naming, syn, tsig, consts) => (naming, syn, f tsig, consts));
fun map_consts f = map_sign (fn (naming, syn, tsig, consts) => (naming, syn, tsig, f consts));
(* naming *)
val naming_of = #naming o rep_sg;
val base_name = NameSpace.base;
val full_name = NameSpace.full o naming_of;
fun full_name_path thy elems = NameSpace.full (NameSpace.add_path elems (naming_of thy));
val declare_name = NameSpace.declare o naming_of;
(* syntax *)
val syn_of = #syn o rep_sg;
(* type signature *)
val tsig_of = #tsig o rep_sg;
val classes_of = #2 o #classes o Type.rep_tsig o tsig_of;
val all_classes = Sorts.all_classes o classes_of;
val minimal_classes = Sorts.minimal_classes o classes_of;
val super_classes = Sorts.super_classes o classes_of;
val defaultS = Type.defaultS o tsig_of;
val subsort = Type.subsort o tsig_of;
val of_sort = Type.of_sort o tsig_of;
val witness_sorts = Type.witness_sorts o tsig_of;
val universal_witness = Type.universal_witness o tsig_of;
val all_sorts_nonempty = is_some o universal_witness;
val typ_instance = Type.typ_instance o tsig_of;
fun typ_equiv thy (T, U) = typ_instance thy (T, U) andalso typ_instance thy (U, T);
val typ_match = Type.typ_match o tsig_of;
val typ_unify = Type.unify o tsig_of;
val is_logtype = member (op =) o Type.logical_types o tsig_of;
(* polymorphic constants *)
val consts_of = #consts o rep_sg;
val the_const_constraint = Consts.the_constraint o consts_of;
val const_constraint = try o the_const_constraint;
val the_const_type = Consts.the_declaration o consts_of;
val const_type = try o the_const_type;
val const_monomorphic = Consts.is_monomorphic o consts_of;
val const_syntax_name = Consts.syntax_name o consts_of;
val const_typargs = Consts.typargs o consts_of;
val const_instance = Consts.instance o consts_of;
val declared_tyname = Symtab.defined o #2 o #types o Type.rep_tsig o tsig_of;
val declared_const = is_some oo const_constraint;
(** intern / extern names **)
val class_space = #1 o #classes o Type.rep_tsig o tsig_of;
val type_space = #1 o #types o Type.rep_tsig o tsig_of;
val const_space = Consts.space_of o consts_of;
val intern_class = NameSpace.intern o class_space;
val extern_class = NameSpace.extern o class_space;
val intern_type = NameSpace.intern o type_space;
val extern_type = NameSpace.extern o type_space;
val intern_const = NameSpace.intern o const_space;
val extern_const = NameSpace.extern o const_space;
val intern_sort = map o intern_class;
val extern_sort = map o extern_class;
local
fun map_typ f g (Type (c, Ts)) = Type (g c, map (map_typ f g) Ts)
| map_typ f _ (TFree (x, S)) = TFree (x, map f S)
| map_typ f _ (TVar (xi, S)) = TVar (xi, map f S);
fun map_term f g h (Const (c, T)) = Const (h c, map_typ f g T)
| map_term f g _ (Free (x, T)) = Free (x, map_typ f g T)
| map_term f g _ (Var (xi, T)) = Var (xi, map_typ f g T)
| map_term _ _ _ (t as Bound _) = t
| map_term f g h (Abs (x, T, t)) = Abs (x, map_typ f g T, map_term f g h t)
| map_term f g h (t $ u) = map_term f g h t $ map_term f g h u;
val add_classesT = Term.fold_atyps
(fn TFree (_, S) => fold (insert (op =)) S
| TVar (_, S) => fold (insert (op =)) S
| _ => I);
fun add_tyconsT (Type (c, Ts)) = insert (op =) c #> fold add_tyconsT Ts
| add_tyconsT _ = I;
val add_consts = Term.fold_aterms (fn Const (c, _) => insert (op =) c | _ => I);
fun mapping add_names f t =
let
fun f' (x: string) = let val y = f x in if x = y then NONE else SOME (x, y) end;
val tab = map_filter f' (add_names t []);
fun get x = the_default x (AList.lookup (op =) tab x);
in get end;
fun typ_mapping f g thy T =
T |> map_typ
(mapping add_classesT (f thy) T)
(mapping add_tyconsT (g thy) T);
fun term_mapping f g h thy t =
t |> map_term
(mapping (Term.fold_types add_classesT) (f thy) t)
(mapping (Term.fold_types add_tyconsT) (g thy) t)
(mapping add_consts (h thy) t);
in
val intern_typ = typ_mapping intern_class intern_type;
val extern_typ = typ_mapping extern_class extern_type;
val intern_term = term_mapping intern_class intern_type intern_const;
fun extern_term h = term_mapping extern_class extern_type (K h);
val intern_tycons = typ_mapping (K I) intern_type;
end;
(** pretty printing of terms, types etc. **)
fun pretty_term' ctxt syn ext t =
let val curried = Context.exists_name Context.CPureN (ProofContext.theory_of ctxt)
in Syntax.pretty_term ext ctxt syn curried t end;
fun pretty_term thy t =
pretty_term' (ProofContext.init thy) (syn_of thy) (Consts.extern (consts_of thy))
(extern_term (Consts.extern_early (consts_of thy)) thy t);
fun pretty_typ thy T =
Syntax.pretty_typ (ProofContext.init thy) (syn_of thy) (extern_typ thy T);
fun pretty_sort thy S =
Syntax.pretty_sort (ProofContext.init thy) (syn_of thy) (extern_sort thy S);
fun pretty_classrel thy cs = Pretty.block (flat
(separate [Pretty.str " <", Pretty.brk 1] (map (single o pretty_sort thy o single) cs)));
fun pretty_arity thy (a, Ss, S) =
let
val a' = extern_type thy a;
val dom =
if null Ss then []
else [Pretty.list "(" ")" (map (pretty_sort thy) Ss), Pretty.brk 1];
in Pretty.block ([Pretty.str (a' ^ " ::"), Pretty.brk 1] @ dom @ [pretty_sort thy S]) end;
val string_of_term = Pretty.string_of oo pretty_term;
val string_of_typ = Pretty.string_of oo pretty_typ;
val string_of_sort = Pretty.string_of oo pretty_sort;
val string_of_classrel = Pretty.string_of oo pretty_classrel;
val string_of_arity = Pretty.string_of oo pretty_arity;
fun pp thy = Pretty.pp (pretty_term thy, pretty_typ thy, pretty_sort thy,
pretty_classrel thy, pretty_arity thy);
(** certify entities **) (*exception TYPE*)
(* certify wrt. type signature *)
val arity_number = Type.arity_number o tsig_of;
fun arity_sorts thy = Type.arity_sorts (pp thy) (tsig_of thy);
val certify_class = Type.cert_class o tsig_of;
val certify_sort = Type.cert_sort o tsig_of;
val certify_typ = Type.cert_typ o tsig_of;
fun certify_typ_mode mode = Type.cert_typ_mode mode o tsig_of;
(* certify term/prop *)
local
fun type_check pp tm =
let
fun err_appl why bs t T u U =
let
val xs = map Free bs; (*we do not rename here*)
val t' = subst_bounds (xs, t);
val u' = subst_bounds (xs, u);
val msg = cat_lines
(TypeInfer.appl_error (Syntax.pp_show_brackets pp) why t' T u' U);
in raise TYPE (msg, [T, U], [t', u']) end;
fun typ_of (_, Const (_, T)) = T
| typ_of (_, Free (_, T)) = T
| typ_of (_, Var (_, T)) = T
| typ_of (bs, Bound i) = snd (List.nth (bs, i) handle Subscript =>
raise TYPE ("Loose bound variable: B." ^ string_of_int i, [], [Bound i]))
| typ_of (bs, Abs (x, T, body)) = T --> typ_of ((x, T) :: bs, body)
| typ_of (bs, t $ u) =
let val T = typ_of (bs, t) and U = typ_of (bs, u) in
(case T of
Type ("fun", [T1, T2]) =>
if T1 = U then T2 else err_appl "Incompatible operand type" bs t T u U
| _ => err_appl "Operator not of function type" bs t T u U)
end;
in typ_of ([], tm) end;
fun err msg = raise TYPE (msg, [], []);
fun check_vars (t $ u) = (check_vars t; check_vars u)
| check_vars (Abs (_, _, t)) = check_vars t
| check_vars (Var (xi as (_, i), _)) =
if i < 0 then err ("Malformed variable: " ^ quote (Term.string_of_vname xi)) else ()
| check_vars _ = ();
in
fun certify' prop pp do_expand consts thy tm =
let
val _ = check_vars tm;
val tm' = Term.map_types (certify_typ thy) tm;
val T = type_check pp tm';
val _ = if prop andalso T <> propT then err "Term not of type prop" else ();
val tm'' = Consts.certify pp (tsig_of thy) do_expand consts tm';
in (if tm = tm'' then tm else tm'', T, Term.maxidx_of_term tm'') end;
fun certify_term thy = certify' false (pp thy) true (consts_of thy) thy;
fun certify_prop thy = certify' true (pp thy) true (consts_of thy) thy;
fun cert_term_abbrev thy = #1 o certify' false (pp thy) false (consts_of thy) thy;
val cert_term = #1 oo certify_term;
val cert_prop = #1 oo certify_prop;
end;
(* specifications *)
fun no_variables kind add addT mk mkT pp tm =
(case (add tm [], addT tm []) of
([], []) => tm
| (frees, tfrees) => error (Pretty.string_of (Pretty.block (Pretty.breaks
(Pretty.str ("Illegal " ^ kind ^ " variable(s) in term:") ::
map (Pretty.term pp o mk) frees @ map (Pretty.typ pp o mkT) tfrees)))));
val no_frees = no_variables "free" Term.add_frees Term.add_tfrees Free TFree;
val no_vars = no_variables "schematic" Term.add_vars Term.add_tvars Var TVar;
fun cert_def pp tm =
let val ((lhs, rhs), _) = tm
|> no_vars pp
|> Logic.strip_imp_concl
|> PrimitiveDefs.dest_def pp Term.is_Const (K false) (K false)
in (Term.dest_Const (Term.head_of lhs), rhs) end
handle TERM (msg, _) => error msg;
(** read and certify entities **) (*exception ERROR*)
(* classes *)
fun read_class thy c = certify_class thy (intern_class thy c)
handle TYPE (msg, _, _) => error msg;
(* type arities *)
fun prep_arity prep_tycon prep_sort thy (t, Ss, S) =
let val arity = (prep_tycon thy t, map (prep_sort thy) Ss, prep_sort thy S)
in Type.add_arity (pp thy) arity (tsig_of thy); arity end;
val read_arity = prep_arity intern_type Syntax.read_sort_global;
val cert_arity = prep_arity (K I) certify_sort;
(* types *)
fun get_sort thy def_sort raw_env =
let
val tsig = tsig_of thy;
fun eq ((xi, S), (xi', S')) =
Term.eq_ix (xi, xi') andalso Type.eq_sort tsig (S, S');
val env = distinct eq raw_env;
val _ = (case duplicates (eq_fst (op =)) env of [] => ()
| dups => error ("Inconsistent sort constraints for type variable(s) "
^ commas_quote (map (Term.string_of_vname' o fst) dups)));
fun get xi =
(case (AList.lookup (op =) env xi, def_sort xi) of
(NONE, NONE) => Type.defaultS tsig
| (NONE, SOME S) => S
| (SOME S, NONE) => S
| (SOME S, SOME S') =>
if Type.eq_sort tsig (S, S') then S'
else error ("Sort constraint inconsistent with default for type variable " ^
quote (Term.string_of_vname' xi)));
in get end;
local
fun gen_read_typ mode (thy, def_sort) str =
let
val ctxt = ProofContext.init thy;
val syn = syn_of thy;
val T = intern_tycons thy
(Syntax.standard_parse_typ ctxt syn (get_sort thy def_sort) (intern_sort thy) str);
in certify_typ_mode mode thy T handle TYPE (msg, _, _) => error msg end
handle ERROR msg => cat_error msg ("The error(s) above occurred in type " ^ quote str);
in
fun no_def_sort thy = (thy: theory, K NONE);
val read_def_typ = gen_read_typ Type.mode_default;
val read_typ = gen_read_typ Type.mode_default o no_def_sort;
val read_typ_syntax = gen_read_typ Type.mode_syntax o no_def_sort;
val read_typ_abbrev = gen_read_typ Type.mode_abbrev o no_def_sort;
end;
(* type and constant names *)
fun read_tyname thy raw_c =
let val c = intern_type thy raw_c
in Type (c, replicate (arity_number thy c) dummyT) end;
val read_const = Consts.read_const o consts_of;
(* read_def_terms -- read terms and infer types *) (*exception ERROR*)
(*
def_type: partial map from indexnames to types (constrains Frees and Vars)
def_sort: partial map from indexnames to sorts (constrains TFrees and TVars)
used: context of already used type variables
freeze: if true then generated parameters are turned into TFrees, else TVars
*)
fun read_def_terms'
pp is_logtype syn consts map_free ctxt (def_type, def_sort) used freeze raw_args =
let
val thy = ProofContext.theory_of ctxt;
fun check_typs Ts = map (certify_typ thy) Ts
handle TYPE (msg, _, _) => error msg;
fun infer args = TypeInfer.infer_types pp (tsig_of thy) check_typs
(try (Consts.the_constraint consts)) def_type used freeze args |>> map fst
handle TYPE (msg, _, _) => error msg;
fun check T t = Exn.Result (singleton (fst o infer) (t, T))
handle ERROR msg => Exn.Exn (ERROR msg);
val map_const = try (#1 o Term.dest_Const o Consts.read_const consts);
fun read T = Syntax.standard_parse_term pp (check T) (get_sort thy def_sort) map_const map_free
(intern_tycons thy) (intern_sort thy) ctxt is_logtype syn T;
in
raw_args
|> map (fn (s, raw_T) =>
let val T = certify_typ thy raw_T handle TYPE (msg, _, _) => error msg
in (read (#1 (TypeInfer.paramify_dummies T 0)) s, T) end)
|> infer
end;
fun read_def_terms (thy, types, sorts) used freeze sTs =
let
val pp = pp thy;
val consts = consts_of thy;
val cert_consts = Consts.certify pp (tsig_of thy) true consts;
fun map_free x = if is_some (types (x, ~1)) then SOME x else NONE;
val (ts, inst) =
read_def_terms' pp (is_logtype thy) (syn_of thy) consts map_free
(ProofContext.init thy) (types, sorts) (Name.make_context used) freeze sTs;
in (map cert_consts ts, inst) end;
fun simple_read_term thy T s =
let val ([t], _) = read_def_terms (thy, K NONE, K NONE) [] true [(s, T)]
in t end handle ERROR msg => cat_error msg ("The error(s) above occurred for term " ^ s);
fun read_term thy = simple_read_term thy dummyT;
fun read_prop thy = simple_read_term thy propT;
(** signature extension functions **) (*exception ERROR/TYPE*)
(* add default sort *)
fun gen_add_defsort prep_sort s thy =
thy |> map_tsig (Type.set_defsort (prep_sort thy s));
val add_defsort = gen_add_defsort Syntax.read_sort_global;
val add_defsort_i = gen_add_defsort certify_sort;
(* add type constructors *)
fun add_types types thy = thy |> map_sign (fn (naming, syn, tsig, consts) =>
let
val syn' = Syntax.extend_type_gram types syn;
val decls = map (fn (a, n, mx) => (Syntax.type_name a mx, n)) types;
val tsig' = Type.add_types naming decls tsig;
in (naming, syn', tsig', consts) end);
fun add_typedecls decls thy =
let
fun type_of (a, vs: string list, mx) =
if not (has_duplicates (op =) vs) then (a, length vs, mx)
else error ("Duplicate parameters in type declaration: " ^ quote a);
in add_types (map type_of decls) thy end;
(* add nonterminals *)
fun add_nonterminals ns thy = thy |> map_sign (fn (naming, syn, tsig, consts) =>
let
val syn' = Syntax.extend_consts ns syn;
val tsig' = Type.add_nonterminals naming ns tsig;
in (naming, syn', tsig', consts) end);
(* add type abbreviations *)
fun gen_add_tyabbr prep_typ (a, vs, rhs, mx) thy =
thy |> map_sign (fn (naming, syn, tsig, consts) =>
let
val syn' = Syntax.extend_type_gram [(a, length vs, mx)] syn;
val a' = Syntax.type_name a mx;
val abbr = (a', vs,
certify_typ_mode Type.mode_syntax thy (prep_typ (ProofContext.init thy) rhs))
handle ERROR msg => cat_error msg ("in type abbreviation " ^ quote a');
val tsig' = Type.add_abbrevs naming [abbr] tsig;
in (naming, syn', tsig', consts) end);
val add_tyabbrs = fold (gen_add_tyabbr Syntax.parse_typ);
val add_tyabbrs_i = fold (gen_add_tyabbr (K I));
(* modify syntax *)
fun gen_syntax change_gram prep_typ mode args thy =
let
fun prep (c, T, mx) = (c,
certify_typ_mode Type.mode_syntax thy (prep_typ (ProofContext.init thy) T), mx)
handle ERROR msg =>
cat_error msg ("in syntax declaration " ^ quote (Syntax.const_name c mx));
in thy |> map_syn (change_gram (is_logtype thy) mode (map prep args)) end;
fun gen_add_syntax x = gen_syntax Syntax.extend_const_gram x;
val add_modesyntax = gen_add_syntax Syntax.parse_typ;
val add_modesyntax_i = gen_add_syntax (K I);
val add_syntax = add_modesyntax Syntax.default_mode;
val add_syntax_i = add_modesyntax_i Syntax.default_mode;
val del_modesyntax = gen_syntax Syntax.remove_const_gram Syntax.parse_typ;
val del_modesyntax_i = gen_syntax Syntax.remove_const_gram (K I);
fun const_syntax thy (Const (c, _), mx) = try (Consts.syntax (consts_of thy)) (c, mx)
| const_syntax _ _ = NONE;
fun add_notation mode args thy =
thy |> add_modesyntax_i mode (map_filter (const_syntax thy) args);
(* add constants *)
local
fun gen_add_consts prep_typ authentic raw_args thy =
let
val prepT = Compress.typ thy o Logic.varifyT o Type.no_tvars o Term.no_dummyT o prep_typ thy;
fun prep (raw_c, raw_T, raw_mx) =
let
val (c, mx) = Syntax.const_mixfix raw_c raw_mx;
val c' = if authentic then Syntax.constN ^ full_name thy c else c;
val T = (prepT raw_T handle TYPE (msg, _, _) => error msg) handle ERROR msg =>
cat_error msg ("in declaration of constant " ^ quote c);
in (((c, T), authentic), (c', T, mx)) end;
val args = map prep raw_args;
in
thy
|> map_consts (fold (Consts.declare (naming_of thy) o #1) args)
|> add_syntax_i (map #2 args)
end;
in
val add_consts = gen_add_consts read_typ false;
val add_consts_i = gen_add_consts certify_typ false;
val add_consts_authentic = gen_add_consts certify_typ true;
end;
(* add abbreviations *)
fun add_abbrev mode (c, raw_t) thy =
let
val pp = pp thy;
val prep_tm = Compress.term thy o no_frees pp o
map_types Logic.legacy_varifyT (* FIXME tmp *) o
Term.no_dummy_patterns o cert_term_abbrev thy;
val t = (prep_tm raw_t handle TYPE (msg, _, _) => error msg | TERM (msg, _) => error msg)
handle ERROR msg => cat_error msg ("in constant abbreviation " ^ quote c);
val (res, consts') = consts_of thy
|> Consts.abbreviate pp (tsig_of thy) (naming_of thy) mode (c, t);
in (res, thy |> map_consts (K consts')) end;
(* add constraints *)
fun gen_add_constraint int_const prep_typ (raw_c, opt_T) thy =
let
val c = int_const thy raw_c;
fun prepT raw_T =
let val T = Logic.varifyT (Type.no_tvars (Term.no_dummyT (prep_typ thy raw_T)))
in cert_term thy (Const (c, T)); T end
handle TYPE (msg, _, _) => error msg;
in thy |> map_consts (Consts.constrain (c, Option.map prepT opt_T)) end;
val add_const_constraint = gen_add_constraint intern_const read_typ;
val add_const_constraint_i = gen_add_constraint (K I) certify_typ;
(* primitive classes and arities *)
fun primitive_class (bclass, classes) thy =
thy |> map_sign (fn (naming, syn, tsig, consts) =>
let
val syn' = Syntax.extend_consts [bclass] syn;
val tsig' = Type.add_class (pp thy) naming (bclass, classes) tsig;
in (naming, syn', tsig', consts) end)
|> add_consts_i [(Logic.const_of_class bclass, Term.a_itselfT --> propT, NoSyn)];
fun primitive_classrel arg thy = thy |> map_tsig (Type.add_classrel (pp thy) arg);
fun primitive_arity arg thy = thy |> map_tsig (Type.add_arity (pp thy) arg);
(* add translation functions *)
local
fun mk trs = map Syntax.mk_trfun trs;
fun gen_add_trfuns ext non_typed (atrs, trs, tr's, atr's) =
map_syn (ext (mk atrs, mk trs, mk (map (apsnd non_typed) tr's), mk atr's));
fun gen_add_trfunsT ext tr's = map_syn (ext ([], [], mk tr's, []));
in
val add_trfuns = gen_add_trfuns Syntax.extend_trfuns Syntax.non_typed_tr';
val add_trfunsT = gen_add_trfunsT Syntax.extend_trfuns;
val add_advanced_trfuns = gen_add_trfuns Syntax.extend_advanced_trfuns Syntax.non_typed_tr'';
val add_advanced_trfunsT = gen_add_trfunsT Syntax.extend_advanced_trfuns;
end;
val add_tokentrfuns = map_syn o Syntax.extend_tokentrfuns;
fun add_mode_tokentrfuns m = add_tokentrfuns o map (fn (s, f) => (m, s, f));
(* translation rules *)
fun gen_trrules f args thy = thy |> map_syn (fn syn =>
let val rules = map (Syntax.map_trrule (apfst (intern_type thy))) args
in f (ProofContext.init thy) (is_logtype thy) syn rules syn end);
val add_trrules = gen_trrules Syntax.extend_trrules;
val del_trrules = gen_trrules Syntax.remove_trrules;
val add_trrules_i = map_syn o Syntax.extend_trrules_i;
val del_trrules_i = map_syn o Syntax.remove_trrules_i;
(* modify naming *)
val add_path = map_naming o NameSpace.add_path;
val no_base_names = map_naming NameSpace.no_base_names;
val qualified_names = map_naming NameSpace.qualified_names;
val sticky_prefix = map_naming o NameSpace.sticky_prefix;
val set_policy = map_naming o NameSpace.set_policy;
val restore_naming = map_naming o K o naming_of;
val parent_path = add_path "..";
val root_path = add_path "/";
val absolute_path = add_path "//";
fun local_path thy = thy |> root_path |> add_path (Context.theory_name thy);
(* hide names *)
fun hide_classes b xs thy = thy |> map_tsig (Type.hide_classes b (map (intern_class thy) xs));
val hide_classes_i = map_tsig oo Type.hide_classes;
fun hide_types b xs thy = thy |> map_tsig (Type.hide_types b (map (intern_type thy) xs));
val hide_types_i = map_tsig oo Type.hide_types;
fun hide_consts b xs thy = thy |> map_consts (fold (Consts.hide b o intern_const thy) xs);
val hide_consts_i = map_consts oo (fold o Consts.hide);
local
val kinds =
[("class", (intern_class, can o certify_class, hide_classes_i)),
("type", (intern_type, declared_tyname, hide_types_i)),
("const", (intern_const, declared_const, hide_consts_i))];
fun gen_hide int b (kind, xnames) thy =
(case AList.lookup (op =) kinds kind of
SOME (intern, check, hide) =>
let
val names = if int then map (intern thy) xnames else xnames;
val bads = filter_out (check thy) names;
in
if null bads then hide b names thy
else error ("Attempt to hide undeclared item(s): " ^ commas_quote bads)
end
| NONE => error ("Bad name space specification: " ^ quote kind));
in
val hide_names = gen_hide true;
val hide_names_i = gen_hide false;
end;
end;