(* Title: ZF/ex/ramsey.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Ramsey's Theorem (finite exponent 2 version)
Based upon the article
D Basin and M Kaufmann,
The Boyer-Moore Prover and Nuprl: An Experimental Comparison.
In G Huet and G Plotkin, editors, Logical Frameworks.
(CUP, 1991), pages 89--119
See also
M Kaufmann,
An example in NQTHM: Ramsey's Theorem
Internal Note, Computational Logic, Inc., Austin, Texas 78703
Available from the author: kaufmann@cli.com
*)
open Ramsey;
(*** Cliques and Independent sets ***)
goalw Ramsey.thy [Clique_def] "Clique(0,V,E)";
by (fast_tac ZF_cs 1);
val Clique0 = result();
goalw Ramsey.thy [Clique_def]
"!!C V E. [| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)";
by (fast_tac ZF_cs 1);
val Clique_superset = result();
goalw Ramsey.thy [Indept_def] "Indept(0,V,E)";
by (fast_tac ZF_cs 1);
val Indept0 = result();
val prems = goalw Ramsey.thy [Indept_def]
"!!I V E. [| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)";
by (fast_tac ZF_cs 1);
val Indept_superset = result();
(*** Atleast ***)
goalw Ramsey.thy [Atleast_def,inj_def] "Atleast(0,A)";
by (fast_tac (ZF_cs addIs [PiI]) 1);
val Atleast0 = result();
val [major] = goalw Ramsey.thy [Atleast_def]
"Atleast(succ(m),A) ==> EX x:A. Atleast(m, A-{x})";
by (rtac (major RS exE) 1);
by (rtac bexI 1);
by (etac (inj_is_fun RS apply_type) 2);
by (rtac succI1 2);
by (rtac exI 1);
by (etac inj_succ_restrict 1);
val Atleast_succD = result();
val major::prems = goalw Ramsey.thy [Atleast_def]
"[| Atleast(n,A); A<=B |] ==> Atleast(n,B)";
by (rtac (major RS exE) 1);
by (rtac exI 1);
by (etac inj_weaken_type 1);
by (resolve_tac prems 1);
val Atleast_superset = result();
val prems = goalw Ramsey.thy [Atleast_def,succ_def]
"[| Atleast(m,B); b~: B |] ==> Atleast(succ(m), cons(b,B))";
by (cut_facts_tac prems 1);
by (etac exE 1);
by (rtac exI 1);
by (etac inj_extend 1);
by (rtac mem_not_refl 1);
by (assume_tac 1);
val Atleast_succI = result();
val prems = goal Ramsey.thy
"[| Atleast(m, B-{x}); x: B |] ==> Atleast(succ(m), B)";
by (cut_facts_tac prems 1);
by (etac (Atleast_succI RS Atleast_superset) 1);
by (fast_tac ZF_cs 1);
by (fast_tac ZF_cs 1);
val Atleast_Diff_succI = result();
(*** Main Cardinality Lemma ***)
(*The #-succ(0) strengthens the original theorem statement, but precisely
the same proof could be used!!*)
val prems = goal Ramsey.thy
"m: nat ==> \
\ ALL n: nat. ALL A B. Atleast((m#+n) #- succ(0), A Un B) --> \
\ Atleast(m,A) | Atleast(n,B)";
by (nat_ind_tac "m" prems 1);
by (fast_tac (ZF_cs addSIs [Atleast0]) 1);
by (asm_simp_tac arith_ss 1);
by (rtac ballI 1);
by (rename_tac "n" 1); (*simplifier does NOT preserve bound names!*)
by (nat_ind_tac "n" [] 1);
by (fast_tac (ZF_cs addSIs [Atleast0]) 1);
by (asm_simp_tac (arith_ss addsimps [add_succ_right]) 1);
by (safe_tac ZF_cs);
by (etac (Atleast_succD RS bexE) 1);
by (etac UnE 1);
(**case x:B. Instantiate the 'ALL A B' induction hypothesis. **)
by (dres_inst_tac [("x1","A"), ("x","B-{x}")] (spec RS spec) 2);
by (etac (mp RS disjE) 2);
(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)
by (REPEAT (eresolve_tac [asm_rl, notE, Atleast_Diff_succI] 3));
(*proving the condition*)
by (etac Atleast_superset 2 THEN fast_tac ZF_cs 2);
(**case x:A. Instantiate the 'ALL n:nat. ALL A B' induction hypothesis. **)
by (dres_inst_tac [("x2","succ(n1)"), ("x1","A-{x}"), ("x","B")]
(bspec RS spec RS spec) 1);
by (etac nat_succI 1);
by (etac (mp RS disjE) 1);
(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)
by (REPEAT (eresolve_tac [asm_rl, Atleast_Diff_succI, notE] 2));
(*proving the condition*)
by (asm_simp_tac (arith_ss addsimps [add_succ_right]) 1);
by (etac Atleast_superset 1 THEN fast_tac ZF_cs 1);
val pigeon2_lemma = result();
(* [| m:nat; n:nat; Atleast(m #+ n #- succ(0), A Un B) |] ==>
Atleast(m,A) | Atleast(n,B) *)
val pigeon2 = standard (pigeon2_lemma RS bspec RS spec RS spec RS mp);
(**** Ramsey's Theorem ****)
(** Base cases of induction; they now admit ANY Ramsey number **)
goalw Ramsey.thy [Ramsey_def] "Ramsey(n,0,j)";
by (fast_tac (ZF_cs addIs [Clique0,Atleast0]) 1);
val Ramsey0j = result();
goalw Ramsey.thy [Ramsey_def] "Ramsey(n,i,0)";
by (fast_tac (ZF_cs addIs [Indept0,Atleast0]) 1);
val Ramseyi0 = result();
(** Lemmas for induction step **)
(*The use of succ(m) here, rather than #-succ(0), simplifies the proof of
Ramsey_step_lemma.*)
val prems = goal Ramsey.thy
"[| Atleast(m #+ n, A); m: nat; n: nat |] ==> \
\ Atleast(succ(m), {x:A. ~P(x)}) | Atleast(n, {x:A. P(x)})";
by (rtac (nat_succI RS pigeon2) 1);
by (simp_tac (arith_ss addsimps prems) 3);
by (rtac Atleast_superset 3);
by (REPEAT (resolve_tac prems 1));
by (fast_tac ZF_cs 1);
val Atleast_partition = result();
(*For the Atleast part, proves ~(a:I) from the second premise!*)
val prems = goalw Ramsey.thy [Symmetric_def,Indept_def]
"[| Symmetric(E); Indept(I, {z: V-{a}. <a,z> ~: E}, E); a: V; \
\ Atleast(j,I) |] ==> \
\ Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))";
by (cut_facts_tac prems 1);
by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1); (*34 secs*)
val Indept_succ = result();
val prems = goalw Ramsey.thy [Symmetric_def,Clique_def]
"[| Symmetric(E); Clique(C, {z: V-{a}. <a,z>:E}, E); a: V; \
\ Atleast(j,C) |] ==> \
\ Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))";
by (cut_facts_tac prems 1);
by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1); (*41 secs*)
val Clique_succ = result();
(** Induction step **)
(*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*)
val ram1::ram2::prems = goalw Ramsey.thy [Ramsey_def]
"[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j)); \
\ m: nat; n: nat |] ==> \
\ Ramsey(succ(m#+n), succ(i), succ(j))";
by (safe_tac ZF_cs);
by (etac (Atleast_succD RS bexE) 1);
by (eres_inst_tac [("P1","%z.<x,z>:E")] (Atleast_partition RS disjE) 1);
by (REPEAT (resolve_tac prems 1));
(*case m*)
by (rtac (ram1 RS spec RS spec RS mp RS disjE) 1);
by (fast_tac ZF_cs 1);
by (fast_tac (ZF_cs addEs [Clique_superset]) 1); (*easy -- given a Clique*)
by (safe_tac ZF_cs);
by (eresolve_tac (swapify [exI]) 1); (*ignore main EX quantifier*)
by (REPEAT (ares_tac [Indept_succ] 1)); (*make a bigger Indept*)
(*case n*)
by (rtac (ram2 RS spec RS spec RS mp RS disjE) 1);
by (fast_tac ZF_cs 1);
by (safe_tac ZF_cs);
by (rtac exI 1);
by (REPEAT (ares_tac [Clique_succ] 1)); (*make a bigger Clique*)
by (fast_tac (ZF_cs addEs [Indept_superset]) 1); (*easy -- given an Indept*)
val Ramsey_step_lemma = result();
(** The actual proof **)
(*Again, the induction requires Ramsey numbers to be positive.*)
val prems = goal Ramsey.thy
"i: nat ==> ALL j: nat. EX n:nat. Ramsey(succ(n), i, j)";
by (nat_ind_tac "i" prems 1);
by (fast_tac (ZF_cs addSIs [nat_0I,Ramsey0j]) 1);
by (rtac ballI 1);
by (nat_ind_tac "j" [] 1);
by (fast_tac (ZF_cs addSIs [nat_0I,Ramseyi0]) 1);
by (dres_inst_tac [("x","succ(j1)")] bspec 1);
by (REPEAT (eresolve_tac [nat_succI,bexE] 1));
by (rtac bexI 1);
by (rtac Ramsey_step_lemma 1);
by (REPEAT (ares_tac [nat_succI,add_type] 1));
val ramsey_lemma = result();
(*Final statement in a tidy form, without succ(...) *)
val prems = goal Ramsey.thy
"[| i: nat; j: nat |] ==> EX n:nat. Ramsey(n,i,j)";
by (rtac (ramsey_lemma RS bspec RS bexE) 1);
by (etac bexI 3);
by (REPEAT (ares_tac (prems@[nat_succI]) 1));
val ramsey = result();
(*Computer Ramsey numbers according to proof above -- which, actually,
does not constrain the base case values at all!*)
fun ram 0 j = 1
| ram i 0 = 1
| ram i j = ram (i-1) j + ram i (j-1);
(*Previous proof gave the following Ramsey numbers, which are smaller than
those above by one!*)
fun ram' 0 j = 0
| ram' i 0 = 0
| ram' i j = ram' (i-1) j + ram' i (j-1) + 1;