(* Title: HOL/Quadratic_Reciprocity/Quadratic_Reciprocity.thy
Authors: Jeremy Avigad, David Gray, and Adam Kramer
License: GPL (GNU GENERAL PUBLIC LICENSE)
*)
header {* The law of Quadratic reciprocity *}
theory Quadratic_Reciprocity = Gauss:;
(***************************************************************)
(* *)
(* Lemmas leading up to the proof of theorem 3.3 in *)
(* Niven and Zuckerman's presentation *)
(* *)
(***************************************************************)
lemma (in GAUSS) QRLemma1: "a * setsum id A =
p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E";
proof -;
from finite_A have "a * setsum id A = setsum (%x. a * x) A";
by (auto simp add: setsum_const_mult id_def)
also have "setsum (%x. a * x) = setsum (%x. x * a)";
by (auto simp add: zmult_commute)
also; have "setsum (%x. x * a) A = setsum id B";
by (auto simp add: B_def sum_prop_id finite_A inj_on_xa_A)
also have "... = setsum (%x. p * (x div p) + StandardRes p x) B";
apply (rule setsum_same_function)
by (auto simp add: finite_B StandardRes_def zmod_zdiv_equality)
also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B";
by (rule setsum_addf)
also; have "setsum (StandardRes p) B = setsum id C";
by (auto simp add: C_def sum_prop_id [THEN sym] finite_B
SR_B_inj)
also; from C_eq have "... = setsum id (D \<union> E)";
by auto
also; from finite_D finite_E have "... = setsum id D + setsum id E";
apply (rule setsum_Un_disjoint)
by (auto simp add: D_def E_def)
also have "setsum (%x. p * (x div p)) B =
setsum ((%x. p * (x div p)) o (%x. (x * a))) A";
by (auto simp add: B_def sum_prop finite_A inj_on_xa_A)
also have "... = setsum (%x. p * ((x * a) div p)) A";
by (auto simp add: o_def)
also from finite_A have "setsum (%x. p * ((x * a) div p)) A =
p * setsum (%x. ((x * a) div p)) A";
by (auto simp add: setsum_const_mult)
finally show ?thesis by arith
qed;
lemma (in GAUSS) QRLemma2: "setsum id A = p * int (card E) - setsum id E +
setsum id D";
proof -;
from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)";
by (simp add: Un_commute)
also from F_D_disj finite_D finite_F have
"... = setsum id D + setsum id F";
apply (simp add: Int_commute)
by (intro setsum_Un_disjoint)
also from F_def have "F = (%x. (p - x)) ` E";
by auto
also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
setsum (%x. (p - x)) E";
by (auto simp add: sum_prop)
also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E";
by (auto simp add: setsum_minus id_def)
also from finite_E have "setsum (%x. p) E = p * int(card E)";
by (intro setsum_const)
finally show ?thesis;
by arith
qed;
lemma (in GAUSS) QRLemma3: "(a - 1) * setsum id A =
p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E";
proof -;
have "(a - 1) * setsum id A = a * setsum id A - setsum id A";
by (auto simp add: zdiff_zmult_distrib)
also note QRLemma1;
also; from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
setsum id E - setsum id A =
p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
setsum id E - (p * int (card E) - setsum id E + setsum id D)";
by auto
also; have "... = p * (\<Sum>x \<in> A. x * a div p) -
p * int (card E) + 2 * setsum id E";
by arith
finally show ?thesis;
by (auto simp only: zdiff_zmult_distrib2)
qed;
lemma (in GAUSS) QRLemma4: "a \<in> zOdd ==>
(setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)";
proof -;
assume a_odd: "a \<in> zOdd";
from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
(a - 1) * setsum id A - 2 * setsum id E";
by arith
from a_odd have "a - 1 \<in> zEven"
by (rule odd_minus_one_even)
hence "(a - 1) * setsum id A \<in> zEven";
by (rule even_times_either)
moreover have "2 * setsum id E \<in> zEven";
by (auto simp add: zEven_def)
ultimately have "(a - 1) * setsum id A - 2 * setsum id E \<in> zEven"
by (rule even_minus_even)
with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
by simp
hence "p \<in> zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
by (rule even_product)
with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
by (auto simp add: odd_iff_not_even)
thus ?thesis;
by (auto simp only: even_diff [THEN sym])
qed;
lemma (in GAUSS) QRLemma5: "a \<in> zOdd ==>
(-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";
proof -;
assume "a \<in> zOdd";
from QRLemma4 have
"(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \<in> zEven)";..;
moreover have "0 \<le> int(card E)";
by auto
moreover have "0 \<le> setsum (%x. ((x * a) div p)) A";
proof (intro setsum_non_neg);
from finite_A show "finite A";.;
next show "\<forall>x \<in> A. 0 \<le> x * a div p";
proof;
fix x;
assume "x \<in> A";
then have "0 \<le> x";
by (auto simp add: A_def)
with a_nonzero have "0 \<le> x * a";
by (auto simp add: zero_le_mult_iff)
with p_g_2 show "0 \<le> x * a div p";
by (auto simp add: pos_imp_zdiv_nonneg_iff)
qed;
qed;
ultimately have "(-1::int)^nat((int (card E))) =
(-1)^nat(((\<Sum>x \<in> A. x * a div p)))";
by (intro neg_one_power_parity, auto)
also have "nat (int(card E)) = card E";
by auto
finally show ?thesis;.;
qed;
lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p));p \<in> zprime; 2 < p;
A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==>
(Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";
apply (subst GAUSS.gauss_lemma)
apply (auto simp add: GAUSS_def)
apply (subst GAUSS.QRLemma5)
by (auto simp add: GAUSS_def)
(******************************************************************)
(* *)
(* Stuff about S, S1 and S2... *)
(* *)
(******************************************************************)
locale QRTEMP =
fixes p :: "int"
fixes q :: "int"
fixes P_set :: "int set"
fixes Q_set :: "int set"
fixes S :: "(int * int) set"
fixes S1 :: "(int * int) set"
fixes S2 :: "(int * int) set"
fixes f1 :: "int => (int * int) set"
fixes f2 :: "int => (int * int) set"
assumes p_prime: "p \<in> zprime"
assumes p_g_2: "2 < p"
assumes q_prime: "q \<in> zprime"
assumes q_g_2: "2 < q"
assumes p_neq_q: "p \<noteq> q"
defines P_set_def: "P_set == {x. 0 < x & x \<le> ((p - 1) div 2) }"
defines Q_set_def: "Q_set == {x. 0 < x & x \<le> ((q - 1) div 2) }"
defines S_def: "S == P_set <*> Q_set"
defines S1_def: "S1 == { (x, y). (x, y):S & ((p * y) < (q * x)) }"
defines S2_def: "S2 == { (x, y). (x, y):S & ((q * x) < (p * y)) }"
defines f1_def: "f1 j == { (j1, y). (j1, y):S & j1 = j &
(y \<le> (q * j) div p) }"
defines f2_def: "f2 j == { (x, j1). (x, j1):S & j1 = j &
(x \<le> (p * j) div q) }";
lemma (in QRTEMP) p_fact: "0 < (p - 1) div 2";
proof -;
from prems have "2 < p" by (simp add: QRTEMP_def)
then have "2 \<le> p - 1" by arith
then have "2 div 2 \<le> (p - 1) div 2" by (rule zdiv_mono1, auto)
then show ?thesis by auto
qed;
lemma (in QRTEMP) q_fact: "0 < (q - 1) div 2";
proof -;
from prems have "2 < q" by (simp add: QRTEMP_def)
then have "2 \<le> q - 1" by arith
then have "2 div 2 \<le> (q - 1) div 2" by (rule zdiv_mono1, auto)
then show ?thesis by auto
qed;
lemma (in QRTEMP) pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>
(p * b \<noteq> q * a)";
proof;
assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2";
then have "q dvd (p * b)" by (auto simp add: dvd_def)
with q_prime p_g_2 have "q dvd p | q dvd b";
by (auto simp add: zprime_zdvd_zmult)
moreover have "~ (q dvd p)";
proof;
assume "q dvd p";
with p_prime have "q = 1 | q = p"
apply (auto simp add: zprime_def QRTEMP_def)
apply (drule_tac x = q and R = False in allE)
apply (simp add: QRTEMP_def)
apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)
apply (insert prems)
by (auto simp add: QRTEMP_def)
with q_g_2 p_neq_q show False by auto
qed;
ultimately have "q dvd b" by auto
then have "q \<le> b";
proof -;
assume "q dvd b";
moreover from prems have "0 < b" by auto
ultimately show ?thesis by (insert zdvd_bounds [of q b], auto)
qed;
with prems have "q \<le> (q - 1) div 2" by auto
then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith
then have "2 * q \<le> q - 1";
proof -;
assume "2 * q \<le> 2 * ((q - 1) div 2)";
with prems have "q \<in> zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)
with odd_minus_one_even have "(q - 1):zEven" by auto
with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto
with prems show ?thesis by auto
qed;
then have p1: "q \<le> -1" by arith
with q_g_2 show False by auto
qed;
lemma (in QRTEMP) P_set_finite: "finite (P_set)";
by (insert p_fact, auto simp add: P_set_def bdd_int_set_l_le_finite)
lemma (in QRTEMP) Q_set_finite: "finite (Q_set)";
by (insert q_fact, auto simp add: Q_set_def bdd_int_set_l_le_finite)
lemma (in QRTEMP) S_finite: "finite S";
by (auto simp add: S_def P_set_finite Q_set_finite cartesian_product_finite)
lemma (in QRTEMP) S1_finite: "finite S1";
proof -;
have "finite S" by (auto simp add: S_finite)
moreover have "S1 \<subseteq> S" by (auto simp add: S1_def S_def)
ultimately show ?thesis by (auto simp add: finite_subset)
qed;
lemma (in QRTEMP) S2_finite: "finite S2";
proof -;
have "finite S" by (auto simp add: S_finite)
moreover have "S2 \<subseteq> S" by (auto simp add: S2_def S_def)
ultimately show ?thesis by (auto simp add: finite_subset)
qed;
lemma (in QRTEMP) P_set_card: "(p - 1) div 2 = int (card (P_set))";
by (insert p_fact, auto simp add: P_set_def card_bdd_int_set_l_le)
lemma (in QRTEMP) Q_set_card: "(q - 1) div 2 = int (card (Q_set))";
by (insert q_fact, auto simp add: Q_set_def card_bdd_int_set_l_le)
lemma (in QRTEMP) S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";
apply (insert P_set_card Q_set_card P_set_finite Q_set_finite)
apply (auto simp add: S_def zmult_int)
done
lemma (in QRTEMP) S1_Int_S2_prop: "S1 \<inter> S2 = {}";
by (auto simp add: S1_def S2_def)
lemma (in QRTEMP) S1_Union_S2_prop: "S = S1 \<union> S2";
apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
proof -;
fix a and b;
assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2";
with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
ultimately show "p * b < q * a" by auto
qed;
lemma (in QRTEMP) card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =
int(card(S1)) + int(card(S2))";
proof-;
have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";
by (auto simp add: S_card)
also have "... = int( card(S1) + card(S2))";
apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
apply (drule card_Un_disjoint, auto)
done
also have "... = int(card(S1)) + int(card(S2))" by auto
finally show ?thesis .;
qed;
lemma (in QRTEMP) aux1a: "[| 0 < a; a \<le> (p - 1) div 2;
0 < b; b \<le> (q - 1) div 2 |] ==>
(p * b < q * a) = (b \<le> q * a div p)";
proof -;
assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2";
have "p * b < q * a ==> b \<le> q * a div p";
proof -;
assume "p * b < q * a";
then have "p * b \<le> q * a" by auto
then have "(p * b) div p \<le> (q * a) div p";
by (rule zdiv_mono1, insert p_g_2, auto)
then show "b \<le> (q * a) div p";
apply (subgoal_tac "p \<noteq> 0")
apply (frule zdiv_zmult_self2, force)
by (insert p_g_2, auto)
qed;
moreover have "b \<le> q * a div p ==> p * b < q * a";
proof -;
assume "b \<le> q * a div p";
then have "p * b \<le> p * ((q * a) div p)";
by (insert p_g_2, auto simp add: mult_le_cancel_left)
also have "... \<le> q * a";
by (rule zdiv_leq_prop, insert p_g_2, auto)
finally have "p * b \<le> q * a" .;
then have "p * b < q * a | p * b = q * a";
by (simp only: order_le_imp_less_or_eq)
moreover have "p * b \<noteq> q * a";
by (rule pb_neq_qa, insert prems, auto)
ultimately show ?thesis by auto
qed;
ultimately show ?thesis ..;
qed;
lemma (in QRTEMP) aux1b: "[| 0 < a; a \<le> (p - 1) div 2;
0 < b; b \<le> (q - 1) div 2 |] ==>
(q * a < p * b) = (a \<le> p * b div q)";
proof -;
assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2";
have "q * a < p * b ==> a \<le> p * b div q";
proof -;
assume "q * a < p * b";
then have "q * a \<le> p * b" by auto
then have "(q * a) div q \<le> (p * b) div q";
by (rule zdiv_mono1, insert q_g_2, auto)
then show "a \<le> (p * b) div q";
apply (subgoal_tac "q \<noteq> 0")
apply (frule zdiv_zmult_self2, force)
by (insert q_g_2, auto)
qed;
moreover have "a \<le> p * b div q ==> q * a < p * b";
proof -;
assume "a \<le> p * b div q";
then have "q * a \<le> q * ((p * b) div q)";
by (insert q_g_2, auto simp add: mult_le_cancel_left)
also have "... \<le> p * b";
by (rule zdiv_leq_prop, insert q_g_2, auto)
finally have "q * a \<le> p * b" .;
then have "q * a < p * b | q * a = p * b";
by (simp only: order_le_imp_less_or_eq)
moreover have "p * b \<noteq> q * a";
by (rule pb_neq_qa, insert prems, auto)
ultimately show ?thesis by auto
qed;
ultimately show ?thesis ..;
qed;
lemma aux2: "[| p \<in> zprime; q \<in> zprime; 2 < p; 2 < q |] ==>
(q * ((p - 1) div 2)) div p \<le> (q - 1) div 2";
proof-;
assume "p \<in> zprime" and "q \<in> zprime" and "2 < p" and "2 < q";
(* Set up what's even and odd *)
then have "p \<in> zOdd & q \<in> zOdd";
by (auto simp add: zprime_zOdd_eq_grt_2)
then have even1: "(p - 1):zEven & (q - 1):zEven";
by (auto simp add: odd_minus_one_even)
then have even2: "(2 * p):zEven & ((q - 1) * p):zEven";
by (auto simp add: zEven_def)
then have even3: "(((q - 1) * p) + (2 * p)):zEven";
by (auto simp: even_plus_even)
(* using these prove it *)
from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)";
by (auto simp add: int_distrib)
then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2";
apply (rule_tac x = "((p - 1) * q)" in even_div_2_l);
by (auto simp add: even3, auto simp add: zmult_ac)
also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)";
by (auto simp add: even1 even_prod_div_2)
also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p";
by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
finally show ?thesis
apply (rule_tac x = " q * ((p - 1) div 2)" and
y = "(q - 1) div 2" in div_prop2);
by (insert prems, auto)
qed;
lemma (in QRTEMP) aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p";
proof;
fix j;
assume j_fact: "j \<in> P_set";
have "int (card (f1 j)) = int (card {y. y \<in> Q_set & y \<le> (q * j) div p})";
proof -;
have "finite (f1 j)";
proof -;
have "(f1 j) \<subseteq> S" by (auto simp add: f1_def)
with S_finite show ?thesis by (auto simp add: finite_subset)
qed;
moreover have "inj_on (%(x,y). y) (f1 j)";
by (auto simp add: f1_def inj_on_def)
ultimately have "card ((%(x,y). y) ` (f1 j)) = card (f1 j)";
by (auto simp add: f1_def card_image)
moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}";
by (insert prems, auto simp add: f1_def S_def Q_set_def P_set_def
image_def)
ultimately show ?thesis by (auto simp add: f1_def)
qed;
also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})";
proof -;
have "{y. y \<in> Q_set & y \<le> (q * j) div p} =
{y. 0 < y & y \<le> (q * j) div p}";
apply (auto simp add: Q_set_def)
proof -;
fix x;
assume "0 < x" and "x \<le> q * j div p";
with j_fact P_set_def have "j \<le> (p - 1) div 2"; by auto
with q_g_2; have "q * j \<le> q * ((p - 1) div 2)";
by (auto simp add: mult_le_cancel_left)
with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p";
by (auto simp add: zdiv_mono1)
also from prems have "... \<le> (q - 1) div 2";
apply simp apply (insert aux2) by (simp add: QRTEMP_def)
finally show "x \<le> (q - 1) div 2" by (insert prems, auto)
qed;
then show ?thesis by auto
qed;
also have "... = (q * j) div p";
proof -;
from j_fact P_set_def have "0 \<le> j" by auto
with q_g_2 have "q * 0 \<le> q * j" by (auto simp only: mult_left_mono)
then have "0 \<le> q * j" by auto
then have "0 div p \<le> (q * j) div p";
apply (rule_tac a = 0 in zdiv_mono1)
by (insert p_g_2, auto)
also have "0 div p = 0" by auto
finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
qed;
finally show "int (card (f1 j)) = q * j div p" .;
qed;
lemma (in QRTEMP) aux3b: "\<forall>j \<in> Q_set. int (card (f2 j)) = (p * j) div q";
proof;
fix j;
assume j_fact: "j \<in> Q_set";
have "int (card (f2 j)) = int (card {y. y \<in> P_set & y \<le> (p * j) div q})";
proof -;
have "finite (f2 j)";
proof -;
have "(f2 j) \<subseteq> S" by (auto simp add: f2_def)
with S_finite show ?thesis by (auto simp add: finite_subset)
qed;
moreover have "inj_on (%(x,y). x) (f2 j)";
by (auto simp add: f2_def inj_on_def)
ultimately have "card ((%(x,y). x) ` (f2 j)) = card (f2 j)";
by (auto simp add: f2_def card_image)
moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}";
by (insert prems, auto simp add: f2_def S_def Q_set_def
P_set_def image_def)
ultimately show ?thesis by (auto simp add: f2_def)
qed;
also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})";
proof -;
have "{y. y \<in> P_set & y \<le> (p * j) div q} =
{y. 0 < y & y \<le> (p * j) div q}";
apply (auto simp add: P_set_def)
proof -;
fix x;
assume "0 < x" and "x \<le> p * j div q";
with j_fact Q_set_def have "j \<le> (q - 1) div 2"; by auto
with p_g_2; have "p * j \<le> p * ((q - 1) div 2)";
by (auto simp add: mult_le_cancel_left)
with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q";
by (auto simp add: zdiv_mono1)
also from prems have "... \<le> (p - 1) div 2";
by (auto simp add: aux2 QRTEMP_def)
finally show "x \<le> (p - 1) div 2" by (insert prems, auto)
qed;
then show ?thesis by auto
qed;
also have "... = (p * j) div q";
proof -;
from j_fact Q_set_def have "0 \<le> j" by auto
with p_g_2 have "p * 0 \<le> p * j" by (auto simp only: mult_left_mono)
then have "0 \<le> p * j" by auto
then have "0 div q \<le> (p * j) div q";
apply (rule_tac a = 0 in zdiv_mono1)
by (insert q_g_2, auto)
also have "0 div q = 0" by auto
finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
qed;
finally show "int (card (f2 j)) = p * j div q" .;
qed;
lemma (in QRTEMP) S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set";
proof -;
have "\<forall>x \<in> P_set. finite (f1 x)";
proof;
fix x;
have "f1 x \<subseteq> S" by (auto simp add: f1_def)
with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)
qed;
moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})";
by (auto simp add: f1_def)
moreover note P_set_finite;
ultimately have "int(card (UNION P_set f1)) =
setsum (%x. int(card (f1 x))) P_set";
by (rule_tac A = P_set in int_card_indexed_union_disjoint_sets, auto)
moreover have "S1 = UNION P_set f1";
by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"
by auto
also have "... = setsum (%j. q * j div p) P_set";
proof -;
note aux3a
with P_set_finite show ?thesis by (rule setsum_same_function)
qed;
finally show ?thesis .;
qed;
lemma (in QRTEMP) S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set";
proof -;
have "\<forall>x \<in> Q_set. finite (f2 x)";
proof;
fix x;
have "f2 x \<subseteq> S" by (auto simp add: f2_def)
with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
qed;
moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->
(f2 x) \<inter> (f2 y) = {})";
by (auto simp add: f2_def)
moreover note Q_set_finite;
ultimately have "int(card (UNION Q_set f2)) =
setsum (%x. int(card (f2 x))) Q_set";
by (rule_tac A = Q_set in int_card_indexed_union_disjoint_sets, auto)
moreover have "S2 = UNION Q_set f2";
by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"
by auto
also have "... = setsum (%j. p * j div q) Q_set";
proof -;
note aux3b;
with Q_set_finite show ?thesis by (rule setsum_same_function)
qed;
finally show ?thesis .;
qed;
lemma (in QRTEMP) S1_carda: "int (card(S1)) =
setsum (%j. (j * q) div p) P_set";
by (auto simp add: S1_card zmult_ac)
lemma (in QRTEMP) S2_carda: "int (card(S2)) =
setsum (%j. (j * p) div q) Q_set";
by (auto simp add: S2_card zmult_ac)
lemma (in QRTEMP) pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +
(setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)";
proof -;
have "(setsum (%j. (j * p) div q) Q_set) +
(setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)";
by (auto simp add: S1_carda S2_carda)
also have "... = int (card S1) + int (card S2)";
by auto
also have "... = ((p - 1) div 2) * ((q - 1) div 2)";
by (auto simp add: card_sum_S1_S2)
finally show ?thesis .;
qed;
lemma pq_prime_neq: "[| p \<in> zprime; q \<in> zprime; p \<noteq> q |] ==> (~[p = 0] (mod q))";
apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
apply (drule_tac x = q in allE)
apply (drule_tac x = p in allE)
by auto
lemma (in QRTEMP) QR_short: "(Legendre p q) * (Legendre q p) =
(-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";
proof -;
from prems have "~([p = 0] (mod q))";
by (auto simp add: pq_prime_neq QRTEMP_def)
with prems have a1: "(Legendre p q) = (-1::int) ^
nat(setsum (%x. ((x * p) div q)) Q_set)";
apply (rule_tac p = q in MainQRLemma)
by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
from prems have "~([q = 0] (mod p))";
apply (rule_tac p = q and q = p in pq_prime_neq)
apply (simp add: QRTEMP_def)+;
by arith
with prems have a2: "(Legendre q p) =
(-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";
apply (rule_tac p = p in MainQRLemma)
by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
from a1 a2 have "(Legendre p q) * (Legendre q p) =
(-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
(-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";
by auto
also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +
nat(setsum (%x. ((x * q) div p)) P_set))";
by (auto simp add: zpower_zadd_distrib)
also have "nat(setsum (%x. ((x * p) div q)) Q_set) +
nat(setsum (%x. ((x * q) div p)) P_set) =
nat((setsum (%x. ((x * p) div q)) Q_set) +
(setsum (%x. ((x * q) div p)) P_set))";
apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in
nat_add_distrib [THEN sym]);
by (auto simp add: S1_carda [THEN sym] S2_carda [THEN sym])
also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))";
by (auto simp add: pq_sum_prop)
finally show ?thesis .;
qed;
theorem Quadratic_Reciprocity:
"[| p \<in> zOdd; p \<in> zprime; q \<in> zOdd; q \<in> zprime;
p \<noteq> q |]
==> (Legendre p q) * (Legendre q p) =
(-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";
by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [THEN sym]
QRTEMP_def)
end