(* Title: HOL/ATP.thy
Author: Fabian Immler, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
*)
header {* Automatic Theorem Provers (ATPs) *}
theory ATP
imports Meson
uses "Tools/lambda_lifting.ML"
"Tools/monomorph.ML"
"Tools/ATP/atp_util.ML"
"Tools/ATP/atp_problem.ML"
"Tools/ATP/atp_proof.ML"
"Tools/ATP/atp_systems.ML"
("Tools/ATP/atp_translate.ML")
("Tools/ATP/atp_reconstruct.ML")
begin
subsection {* Higher-order reasoning helpers *}
definition fFalse :: bool where [no_atp]:
"fFalse \<longleftrightarrow> False"
definition fTrue :: bool where [no_atp]:
"fTrue \<longleftrightarrow> True"
definition fNot :: "bool \<Rightarrow> bool" where [no_atp]:
"fNot P \<longleftrightarrow> \<not> P"
definition fconj :: "bool \<Rightarrow> bool \<Rightarrow> bool" where [no_atp]:
"fconj P Q \<longleftrightarrow> P \<and> Q"
definition fdisj :: "bool \<Rightarrow> bool \<Rightarrow> bool" where [no_atp]:
"fdisj P Q \<longleftrightarrow> P \<or> Q"
definition fimplies :: "bool \<Rightarrow> bool \<Rightarrow> bool" where [no_atp]:
"fimplies P Q \<longleftrightarrow> (P \<longrightarrow> Q)"
definition fequal :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where [no_atp]:
"fequal x y \<longleftrightarrow> (x = y)"
definition fAll :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where [no_atp]:
"fAll P \<longleftrightarrow> All P"
definition fEx :: "('a \<Rightarrow> bool) \<Rightarrow> bool" where [no_atp]:
"fEx P \<longleftrightarrow> Ex P"
subsection {* Setup *}
use "Tools/ATP/atp_translate.ML"
use "Tools/ATP/atp_reconstruct.ML"
setup ATP_Systems.setup
end