(* Title: HOL/Complete_Partial_Order.thy
Author: Brian Huffman, Portland State University
Author: Alexander Krauss, TU Muenchen
*)
header {* Chain-complete partial orders and their fixpoints *}
theory Complete_Partial_Order
imports Product_Type
begin
subsection {* Monotone functions *}
text {* Dictionary-passing version of @{const Orderings.mono}. *}
definition monotone :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
where "monotone orda ordb f \<longleftrightarrow> (\<forall>x y. orda x y \<longrightarrow> ordb (f x) (f y))"
lemma monotoneI[intro?]: "(\<And>x y. orda x y \<Longrightarrow> ordb (f x) (f y))
\<Longrightarrow> monotone orda ordb f"
unfolding monotone_def by iprover
lemma monotoneD[dest?]: "monotone orda ordb f \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)"
unfolding monotone_def by iprover
subsection {* Chains *}
text {* A chain is a totally-ordered set. Chains are parameterized over
the order for maximal flexibility, since type classes are not enough.
*}
definition
chain :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
where
"chain ord S \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. ord x y \<or> ord y x)"
lemma chainI:
assumes "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> ord x y \<or> ord y x"
shows "chain ord S"
using assms unfolding chain_def by fast
lemma chainD:
assumes "chain ord S" and "x \<in> S" and "y \<in> S"
shows "ord x y \<or> ord y x"
using assms unfolding chain_def by fast
lemma chainE:
assumes "chain ord S" and "x \<in> S" and "y \<in> S"
obtains "ord x y" | "ord y x"
using assms unfolding chain_def by fast
subsection {* Chain-complete partial orders *}
text {*
A ccpo has a least upper bound for any chain. In particular, the
empty set is a chain, so every ccpo must have a bottom element.
*}
class ccpo = order +
fixes lub :: "'a set \<Rightarrow> 'a"
assumes lub_upper: "chain (op \<le>) A \<Longrightarrow> x \<in> A \<Longrightarrow> x \<le> lub A"
assumes lub_least: "chain (op \<le>) A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> x \<le> z) \<Longrightarrow> lub A \<le> z"
begin
subsection {* Transfinite iteration of a function *}
inductive_set iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set"
for f :: "'a \<Rightarrow> 'a"
where
step: "x \<in> iterates f \<Longrightarrow> f x \<in> iterates f"
| lub: "chain (op \<le>) M \<Longrightarrow> \<forall>x\<in>M. x \<in> iterates f \<Longrightarrow> lub M \<in> iterates f"
lemma iterates_le_f:
"x \<in> iterates f \<Longrightarrow> monotone (op \<le>) (op \<le>) f \<Longrightarrow> x \<le> f x"
by (induct x rule: iterates.induct)
(force dest: monotoneD intro!: lub_upper lub_least)+
lemma chain_iterates:
assumes f: "monotone (op \<le>) (op \<le>) f"
shows "chain (op \<le>) (iterates f)" (is "chain _ ?C")
proof (rule chainI)
fix x y assume "x \<in> ?C" "y \<in> ?C"
then show "x \<le> y \<or> y \<le> x"
proof (induct x arbitrary: y rule: iterates.induct)
fix x y assume y: "y \<in> ?C"
and IH: "\<And>z. z \<in> ?C \<Longrightarrow> x \<le> z \<or> z \<le> x"
from y show "f x \<le> y \<or> y \<le> f x"
proof (induct y rule: iterates.induct)
case (step y) with IH f show ?case by (auto dest: monotoneD)
next
case (lub M)
then have chM: "chain (op \<le>) M"
and IH': "\<And>z. z \<in> M \<Longrightarrow> f x \<le> z \<or> z \<le> f x" by auto
show "f x \<le> lub M \<or> lub M \<le> f x"
proof (cases "\<exists>z\<in>M. f x \<le> z")
case True then have "f x \<le> lub M"
apply rule
apply (erule order_trans)
by (rule lub_upper[OF chM])
thus ?thesis ..
next
case False with IH'
show ?thesis by (auto intro: lub_least[OF chM])
qed
qed
next
case (lub M y)
show ?case
proof (cases "\<exists>x\<in>M. y \<le> x")
case True then have "y \<le> lub M"
apply rule
apply (erule order_trans)
by (rule lub_upper[OF lub(1)])
thus ?thesis ..
next
case False with lub
show ?thesis by (auto intro: lub_least)
qed
qed
qed
subsection {* Fixpoint combinator *}
definition
fixp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"
where
"fixp f = lub (iterates f)"
lemma iterates_fixp:
assumes f: "monotone (op \<le>) (op \<le>) f" shows "fixp f \<in> iterates f"
unfolding fixp_def
by (simp add: iterates.lub chain_iterates f)
lemma fixp_unfold:
assumes f: "monotone (op \<le>) (op \<le>) f"
shows "fixp f = f (fixp f)"
proof (rule antisym)
show "fixp f \<le> f (fixp f)"
by (intro iterates_le_f iterates_fixp f)
have "f (fixp f) \<le> lub (iterates f)"
by (intro lub_upper chain_iterates f iterates.step iterates_fixp)
thus "f (fixp f) \<le> fixp f"
unfolding fixp_def .
qed
lemma fixp_lowerbound:
assumes f: "monotone (op \<le>) (op \<le>) f" and z: "f z \<le> z" shows "fixp f \<le> z"
unfolding fixp_def
proof (rule lub_least[OF chain_iterates[OF f]])
fix x assume "x \<in> iterates f"
thus "x \<le> z"
proof (induct x rule: iterates.induct)
fix x assume "x \<le> z" with f have "f x \<le> f z" by (rule monotoneD)
also note z finally show "f x \<le> z" .
qed (auto intro: lub_least)
qed
subsection {* Fixpoint induction *}
definition
admissible :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
where
"admissible P = (\<forall>A. chain (op \<le>) A \<longrightarrow> (\<forall>x\<in>A. P x) \<longrightarrow> P (lub A))"
lemma admissibleI:
assumes "\<And>A. chain (op \<le>) A \<Longrightarrow> \<forall>x\<in>A. P x \<Longrightarrow> P (lub A)"
shows "admissible P"
using assms unfolding admissible_def by fast
lemma admissibleD:
assumes "admissible P"
assumes "chain (op \<le>) A"
assumes "\<And>x. x \<in> A \<Longrightarrow> P x"
shows "P (lub A)"
using assms by (auto simp: admissible_def)
lemma fixp_induct:
assumes adm: "admissible P"
assumes mono: "monotone (op \<le>) (op \<le>) f"
assumes step: "\<And>x. P x \<Longrightarrow> P (f x)"
shows "P (fixp f)"
unfolding fixp_def using adm chain_iterates[OF mono]
proof (rule admissibleD)
fix x assume "x \<in> iterates f"
thus "P x"
by (induct rule: iterates.induct)
(auto intro: step admissibleD adm)
qed
lemma admissible_True: "admissible (\<lambda>x. True)"
unfolding admissible_def by simp
lemma admissible_False: "\<not> admissible (\<lambda>x. False)"
unfolding admissible_def chain_def by simp
lemma admissible_const: "admissible (\<lambda>x. t) = t"
by (cases t, simp_all add: admissible_True admissible_False)
lemma admissible_conj:
assumes "admissible (\<lambda>x. P x)"
assumes "admissible (\<lambda>x. Q x)"
shows "admissible (\<lambda>x. P x \<and> Q x)"
using assms unfolding admissible_def by simp
lemma admissible_all:
assumes "\<And>y. admissible (\<lambda>x. P x y)"
shows "admissible (\<lambda>x. \<forall>y. P x y)"
using assms unfolding admissible_def by fast
lemma admissible_ball:
assumes "\<And>y. y \<in> A \<Longrightarrow> admissible (\<lambda>x. P x y)"
shows "admissible (\<lambda>x. \<forall>y\<in>A. P x y)"
using assms unfolding admissible_def by fast
lemma chain_compr: "chain (op \<le>) A \<Longrightarrow> chain (op \<le>) {x \<in> A. P x}"
unfolding chain_def by fast
lemma admissible_disj_lemma:
assumes A: "chain (op \<le>)A"
assumes P: "\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y"
shows "lub A = lub {x \<in> A. P x}"
proof (rule antisym)
have *: "chain (op \<le>) {x \<in> A. P x}"
by (rule chain_compr [OF A])
show "lub A \<le> lub {x \<in> A. P x}"
apply (rule lub_least [OF A])
apply (drule P [rule_format], clarify)
apply (erule order_trans)
apply (simp add: lub_upper [OF *])
done
show "lub {x \<in> A. P x} \<le> lub A"
apply (rule lub_least [OF *])
apply clarify
apply (simp add: lub_upper [OF A])
done
qed
lemma admissible_disj:
fixes P Q :: "'a \<Rightarrow> bool"
assumes P: "admissible (\<lambda>x. P x)"
assumes Q: "admissible (\<lambda>x. Q x)"
shows "admissible (\<lambda>x. P x \<or> Q x)"
proof (rule admissibleI)
fix A :: "'a set" assume A: "chain (op \<le>) A"
assume "\<forall>x\<in>A. P x \<or> Q x"
hence "(\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y) \<or> (\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> Q y)"
using chainD[OF A] by blast
hence "lub A = lub {x \<in> A. P x} \<or> lub A = lub {x \<in> A. Q x}"
using admissible_disj_lemma [OF A] by fast
thus "P (lub A) \<or> Q (lub A)"
apply (rule disjE, simp_all)
apply (rule disjI1, rule admissibleD [OF P chain_compr [OF A]], simp)
apply (rule disjI2, rule admissibleD [OF Q chain_compr [OF A]], simp)
done
qed
end
hide_const (open) lub iterates fixp admissible
end