(* Author: Gerwin Klein, Tobias Nipkow *)
theory Big_Step imports Com begin
subsection "Big-Step Semantics of Commands"
inductive
big_step :: "com \<times> state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55)
where
Skip: "(SKIP,s) \<Rightarrow> s" |
Assign: "(x ::= a,s) \<Rightarrow> s(x := aval a s)" |
Semi: "\<lbrakk> (c\<^isub>1,s\<^isub>1) \<Rightarrow> s\<^isub>2; (c\<^isub>2,s\<^isub>2) \<Rightarrow> s\<^isub>3 \<rbrakk> \<Longrightarrow>
(c\<^isub>1;c\<^isub>2, s\<^isub>1) \<Rightarrow> s\<^isub>3" |
IfTrue: "\<lbrakk> bval b s; (c\<^isub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow>
(IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t" |
IfFalse: "\<lbrakk> \<not>bval b s; (c\<^isub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow>
(IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t" |
WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> s" |
WhileTrue: "\<lbrakk> bval b s\<^isub>1; (c,s\<^isub>1) \<Rightarrow> s\<^isub>2; (WHILE b DO c, s\<^isub>2) \<Rightarrow> s\<^isub>3 \<rbrakk> \<Longrightarrow>
(WHILE b DO c, s\<^isub>1) \<Rightarrow> s\<^isub>3"
schematic_lemma ex: "(''x'' ::= N 5; ''y'' ::= V ''x'', s) \<Rightarrow> ?t"
apply(rule Semi)
apply(rule Assign)
apply simp
apply(rule Assign)
done
thm ex[simplified]
text{* We want to execute the big-step rules: *}
code_pred big_step .
text{* For inductive definitions we need command
\texttt{values} instead of \texttt{value}. *}
values "{t. (SKIP, %_. 0) \<Rightarrow> t}"
text{* We need to translate the result state into a list
to display it. *}
values "{map t [''x''] |t. (SKIP, <''x'' := 42>) \<Rightarrow> t}"
values "{map t [''x''] |t. (''x'' ::= N 2, <''x'' := 42>) \<Rightarrow> t}"
values "{map t [''x'',''y''] |t.
(WHILE Less (V ''x'') (V ''y'') DO (''x'' ::= Plus (V ''x'') (N 5)),
<''x'' := 0, ''y'' := 13>) \<Rightarrow> t}"
text{* Proof automation: *}
declare big_step.intros [intro]
text{* The standard induction rule
@{thm [display] big_step.induct [no_vars]} *}
thm big_step.induct
text{* A customized induction rule for (c,s) pairs: *}
lemmas big_step_induct = big_step.induct[split_format(complete)]
thm big_step_induct
text {*
@{thm [display] big_step_induct [no_vars]}
*}
subsection "Rule inversion"
text{* What can we deduce from @{prop "(SKIP,s) \<Rightarrow> t"} ?
That @{prop "s = t"}. This is how we can automatically prove it: *}
inductive_cases skipE[elim!]: "(SKIP,s) \<Rightarrow> t"
thm skipE
text{* This is an \emph{elimination rule}. The [elim] attribute tells auto,
blast and friends (but not simp!) to use it automatically; [elim!] means that
it is applied eagerly.
Similarly for the other commands: *}
inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t"
thm AssignE
inductive_cases SemiE[elim!]: "(c1;c2,s1) \<Rightarrow> s3"
thm SemiE
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t"
thm IfE
inductive_cases WhileE[elim]: "(WHILE b DO c,s) \<Rightarrow> t"
thm WhileE
text{* Only [elim]: [elim!] would not terminate. *}
text{* An automatic example: *}
lemma "(IF b THEN SKIP ELSE SKIP, s) \<Rightarrow> t \<Longrightarrow> t = s"
by blast
text{* Rule inversion by hand via the ``cases'' method: *}
lemma assumes "(IF b THEN SKIP ELSE SKIP, s) \<Rightarrow> t"
shows "t = s"
proof-
from assms show ?thesis
proof cases --"inverting assms"
case IfTrue thm IfTrue
thus ?thesis by blast
next
case IfFalse thus ?thesis by blast
qed
qed
(* Using rule inversion to prove simplification rules: *)
lemma assign_simp:
"(x ::= a,s) \<Rightarrow> s' \<longleftrightarrow> (s' = s(x := aval a s))"
by auto
subsection "Command Equivalence"
text {*
We call two statements @{text c} and @{text c'} equivalent wrt.\ the
big-step semantics when \emph{@{text c} started in @{text s} terminates
in @{text s'} iff @{text c'} started in the same @{text s} also terminates
in the same @{text s'}}. Formally:
*}
abbreviation
equiv_c :: "com \<Rightarrow> com \<Rightarrow> bool" (infix "\<sim>" 50) where
"c \<sim> c' == (\<forall>s t. (c,s) \<Rightarrow> t = (c',s) \<Rightarrow> t)"
text {*
Warning: @{text"\<sim>"} is the symbol written \verb!\ < s i m >! (without spaces).
As an example, we show that loop unfolding is an equivalence
transformation on programs:
*}
lemma unfold_while:
"(WHILE b DO c) \<sim> (IF b THEN c; WHILE b DO c ELSE SKIP)" (is "?w \<sim> ?iw")
proof -
-- "to show the equivalence, we look at the derivation tree for"
-- "each side and from that construct a derivation tree for the other side"
{ fix s t assume "(?w, s) \<Rightarrow> t"
-- "as a first thing we note that, if @{text b} is @{text False} in state @{text s},"
-- "then both statements do nothing:"
{ assume "\<not>bval b s"
hence "t = s" using `(?w,s) \<Rightarrow> t` by blast
hence "(?iw, s) \<Rightarrow> t" using `\<not>bval b s` by blast
}
moreover
-- "on the other hand, if @{text b} is @{text True} in state @{text s},"
-- {* then only the @{text WhileTrue} rule can have been used to derive @{text "(?w, s) \<Rightarrow> t"} *}
{ assume "bval b s"
with `(?w, s) \<Rightarrow> t` obtain s' where
"(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
-- "now we can build a derivation tree for the @{text IF}"
-- "first, the body of the True-branch:"
hence "(c; ?w, s) \<Rightarrow> t" by (rule Semi)
-- "then the whole @{text IF}"
with `bval b s` have "(?iw, s) \<Rightarrow> t" by (rule IfTrue)
}
ultimately
-- "both cases together give us what we want:"
have "(?iw, s) \<Rightarrow> t" by blast
}
moreover
-- "now the other direction:"
{ fix s t assume "(?iw, s) \<Rightarrow> t"
-- "again, if @{text b} is @{text False} in state @{text s}, then the False-branch"
-- "of the @{text IF} is executed, and both statements do nothing:"
{ assume "\<not>bval b s"
hence "s = t" using `(?iw, s) \<Rightarrow> t` by blast
hence "(?w, s) \<Rightarrow> t" using `\<not>bval b s` by blast
}
moreover
-- "on the other hand, if @{text b} is @{text True} in state @{text s},"
-- {* then this time only the @{text IfTrue} rule can have be used *}
{ assume "bval b s"
with `(?iw, s) \<Rightarrow> t` have "(c; ?w, s) \<Rightarrow> t" by auto
-- "and for this, only the Semi-rule is applicable:"
then obtain s' where
"(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
-- "with this information, we can build a derivation tree for the @{text WHILE}"
with `bval b s`
have "(?w, s) \<Rightarrow> t" by (rule WhileTrue)
}
ultimately
-- "both cases together again give us what we want:"
have "(?w, s) \<Rightarrow> t" by blast
}
ultimately
show ?thesis by blast
qed
text {* Luckily, such lengthy proofs are seldom necessary. Isabelle can
prove many such facts automatically. *}
lemma
"(WHILE b DO c) \<sim> (IF b THEN c; WHILE b DO c ELSE SKIP)"
by blast
lemma triv_if:
"(IF b THEN c ELSE c) \<sim> c"
by blast
lemma commute_if:
"(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSE c2)
\<sim>
(IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN c12 ELSE c2))"
by blast
subsection "Execution is deterministic"
text {* This proof is automatic. *}
theorem big_step_determ: "\<lbrakk> (c,s) \<Rightarrow> t; (c,s) \<Rightarrow> u \<rbrakk> \<Longrightarrow> u = t"
apply (induct arbitrary: u rule: big_step.induct)
apply blast+
done
text {*
This is the proof as you might present it in a lecture. The remaining
cases are simple enough to be proved automatically:
*}
theorem
"(c,s) \<Rightarrow> t \<Longrightarrow> (c,s) \<Rightarrow> t' \<Longrightarrow> t' = t"
proof (induct arbitrary: t' rule: big_step.induct)
-- "the only interesting case, @{text WhileTrue}:"
fix b c s s1 t t'
-- "The assumptions of the rule:"
assume "bval b s" and "(c,s) \<Rightarrow> s1" and "(WHILE b DO c,s1) \<Rightarrow> t"
-- {* Ind.Hyp; note the @{text"\<And>"} because of arbitrary: *}
assume IHc: "\<And>t'. (c,s) \<Rightarrow> t' \<Longrightarrow> t' = s1"
assume IHw: "\<And>t'. (WHILE b DO c,s1) \<Rightarrow> t' \<Longrightarrow> t' = t"
-- "Premise of implication:"
assume "(WHILE b DO c,s) \<Rightarrow> t'"
with `bval b s` obtain s1' where
c: "(c,s) \<Rightarrow> s1'" and
w: "(WHILE b DO c,s1') \<Rightarrow> t'"
by auto
from c IHc have "s1' = s1" by blast
with w IHw show "t' = t" by blast
qed blast+ -- "prove the rest automatically"
end