(* Title: Sequents/ILL.thy
Author: Sara Kalvala and Valeria de Paiva
Copyright 1995 University of Cambridge
*)
theory ILL
imports Sequents
begin
consts
Trueprop :: "two_seqi"
tens :: "[o, o] => o" (infixr "><" 35)
limp :: "[o, o] => o" (infixr "-o" 45)
liff :: "[o, o] => o" (infixr "o-o" 45)
FShriek :: "o => o" ("! _" [100] 1000)
lconj :: "[o, o] => o" (infixr "&&" 35)
ldisj :: "[o, o] => o" (infixr "++" 35)
zero :: "o" ("0")
top :: "o" ("1")
eye :: "o" ("I")
aneg :: "o=>o" ("~_")
(* context manipulation *)
Context :: "two_seqi"
(* promotion rule *)
PromAux :: "three_seqi"
syntax
"_Trueprop" :: "single_seqe" ("((_)/ |- (_))" [6,6] 5)
"_Context" :: "two_seqe" ("((_)/ :=: (_))" [6,6] 5)
"_PromAux" :: "three_seqe" ("promaux {_||_||_}")
parse_translation {*
[(@{syntax_const "_Trueprop"}, single_tr @{const_syntax Trueprop}),
(@{syntax_const "_Context"}, two_seq_tr @{const_syntax Context}),
(@{syntax_const "_PromAux"}, three_seq_tr @{const_syntax PromAux})]
*}
print_translation {*
[(@{const_syntax Trueprop}, single_tr' @{syntax_const "_Trueprop"}),
(@{const_syntax Context}, two_seq_tr' @{syntax_const "_Context"}),
(@{const_syntax PromAux}, three_seq_tr' @{syntax_const "_PromAux"})]
*}
defs
liff_def: "P o-o Q == (P -o Q) >< (Q -o P)"
aneg_def: "~A == A -o 0"
axioms
identity: "P |- P"
zerol: "$G, 0, $H |- A"
(* RULES THAT DO NOT DIVIDE CONTEXT *)
derelict: "$F, A, $G |- C ==> $F, !A, $G |- C"
(* unfortunately, this one removes !A *)
contract: "$F, !A, !A, $G |- C ==> $F, !A, $G |- C"
weaken: "$F, $G |- C ==> $G, !A, $F |- C"
(* weak form of weakening, in practice just to clean context *)
(* weaken and contract not needed (CHECK) *)
promote2: "promaux{ || $H || B} ==> $H |- !B"
promote1: "promaux{!A, $G || $H || B}
==> promaux {$G || $H, !A || B}"
promote0: "$G |- A ==> promaux {$G || || A}"
tensl: "$H, A, B, $G |- C ==> $H, A >< B, $G |- C"
impr: "A, $F |- B ==> $F |- A -o B"
conjr: "[| $F |- A ;
$F |- B |]
==> $F |- (A && B)"
conjll: "$G, A, $H |- C ==> $G, A && B, $H |- C"
conjlr: "$G, B, $H |- C ==> $G, A && B, $H |- C"
disjrl: "$G |- A ==> $G |- A ++ B"
disjrr: "$G |- B ==> $G |- A ++ B"
disjl: "[| $G, A, $H |- C ;
$G, B, $H |- C |]
==> $G, A ++ B, $H |- C"
(* RULES THAT DIVIDE CONTEXT *)
tensr: "[| $F, $J :=: $G;
$F |- A ;
$J |- B |]
==> $G |- A >< B"
impl: "[| $G, $F :=: $J, $H ;
B, $F |- C ;
$G |- A |]
==> $J, A -o B, $H |- C"
cut: " [| $J1, $H1, $J2, $H3, $J3, $H2, $J4, $H4 :=: $F ;
$H1, $H2, $H3, $H4 |- A ;
$J1, $J2, A, $J3, $J4 |- B |] ==> $F |- B"
(* CONTEXT RULES *)
context1: "$G :=: $G"
context2: "$F, $G :=: $H, !A, $G ==> $F, A, $G :=: $H, !A, $G"
context3: "$F, $G :=: $H, $J ==> $F, A, $G :=: $H, A, $J"
context4a: "$F :=: $H, $G ==> $F :=: $H, !A, $G"
context4b: "$F, $H :=: $G ==> $F, !A, $H :=: $G"
context5: "$F, $G :=: $H ==> $G, $F :=: $H"
ML {*
val lazy_cs = empty_pack
add_safes [@{thm tensl}, @{thm conjr}, @{thm disjl}, @{thm promote0},
@{thm context2}, @{thm context3}]
add_unsafes [@{thm identity}, @{thm zerol}, @{thm conjll}, @{thm conjlr},
@{thm disjrl}, @{thm disjrr}, @{thm impr}, @{thm tensr}, @{thm impl},
@{thm derelict}, @{thm weaken}, @{thm promote1}, @{thm promote2},
@{thm context1}, @{thm context4a}, @{thm context4b}];
fun prom_tac n =
REPEAT (resolve_tac [@{thm promote0}, @{thm promote1}, @{thm promote2}] n)
*}
method_setup best_lazy =
{* Scan.succeed (K (SIMPLE_METHOD' (best_tac lazy_cs))) *}
"lazy classical reasoning"
lemma aux_impl: "$F, $G |- A ==> $F, !(A -o B), $G |- B"
apply (rule derelict)
apply (rule impl)
apply (rule_tac [2] identity)
apply (rule context1)
apply assumption
done
lemma conj_lemma: " $F, !A, !B, $G |- C ==> $F, !(A && B), $G |- C"
apply (rule contract)
apply (rule_tac A = " (!A) >< (!B) " in cut)
apply (rule_tac [2] tensr)
prefer 3
apply (subgoal_tac "! (A && B) |- !A")
apply assumption
apply best_lazy
prefer 3
apply (subgoal_tac "! (A && B) |- !B")
apply assumption
apply best_lazy
apply (rule_tac [2] context1)
apply (rule_tac [2] tensl)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma impr_contract: "!A, !A, $G |- B ==> $G |- (!A) -o B"
apply (rule impr)
apply (rule contract)
apply assumption
done
lemma impr_contr_der: "A, !A, $G |- B ==> $G |- (!A) -o B"
apply (rule impr)
apply (rule contract)
apply (rule derelict)
apply assumption
done
lemma contrad1: "$F, (!B) -o 0, $G, !B, $H |- A"
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context3)
apply (rule context1)
apply (rule zerol)
done
lemma contrad2: "$F, !B, $G, (!B) -o 0, $H |- A"
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context3)
apply (rule context1)
apply (rule zerol)
done
lemma ll_mp: "A -o B, A |- B"
apply (rule impl)
apply (rule_tac [2] identity)
apply (rule_tac [2] identity)
apply (rule context1)
done
lemma mp_rule1: "$F, B, $G, $H |- C ==> $F, A, $G, A -o B, $H |- C"
apply (rule_tac A = "B" in cut)
apply (rule_tac [2] ll_mp)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma mp_rule2: "$F, B, $G, $H |- C ==> $F, A -o B, $G, A, $H |- C"
apply (rule_tac A = "B" in cut)
apply (rule_tac [2] ll_mp)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context3)
apply (rule context1)
done
lemma or_to_and: "!((!(A ++ B)) -o 0) |- !( ((!A) -o 0) && ((!B) -o 0))"
by best_lazy
lemma o_a_rule: "$F, !( ((!A) -o 0) && ((!B) -o 0)), $G |- C ==>
$F, !((!(A ++ B)) -o 0), $G |- C"
apply (rule cut)
apply (rule_tac [2] or_to_and)
prefer 2 apply (assumption)
apply (rule context3)
apply (rule context1)
done
lemma conj_imp: "((!A) -o C) ++ ((!B) -o C) |- (!(A && B)) -o C"
apply (rule impr)
apply (rule conj_lemma)
apply (rule disjl)
apply (rule mp_rule1, best_lazy)+
done
lemma not_imp: "!A, !((!B) -o 0) |- (!((!A) -o B)) -o 0"
by best_lazy
lemma a_not_a: "!A -o (!A -o 0) |- !A -o 0"
apply (rule impr)
apply (rule contract)
apply (rule impl)
apply (rule_tac [3] identity)
apply (rule context1)
apply best_lazy
done
lemma a_not_a_rule: "$J1, !A -o 0, $J2 |- B ==> $J1, !A -o (!A -o 0), $J2 |- B"
apply (rule_tac A = "!A -o 0" in cut)
apply (rule_tac [2] a_not_a)
prefer 2 apply (assumption)
apply best_lazy
done
ML {*
val safe_cs = lazy_cs add_safes [@{thm conj_lemma}, @{thm ll_mp}, @{thm contrad1},
@{thm contrad2}, @{thm mp_rule1}, @{thm mp_rule2}, @{thm o_a_rule},
@{thm a_not_a_rule}]
add_unsafes [@{thm aux_impl}];
val power_cs = safe_cs add_unsafes [@{thm impr_contr_der}];
*}
method_setup best_safe =
{* Scan.succeed (K (SIMPLE_METHOD' (best_tac safe_cs))) *} ""
method_setup best_power =
{* Scan.succeed (K (SIMPLE_METHOD' (best_tac power_cs))) *} ""
(* Some examples from Troelstra and van Dalen *)
lemma "!((!A) -o ((!B) -o 0)) |- (!(A && B)) -o 0"
by best_safe
lemma "!((!(A && B)) -o 0) |- !((!A) -o ((!B) -o 0))"
by best_safe
lemma "!( (!((! ((!A) -o B) ) -o 0)) -o 0) |-
(!A) -o ( (! ((!B) -o 0)) -o 0)"
by best_safe
lemma "!( (!A) -o ( (! ((!B) -o 0)) -o 0) ) |-
(!((! ((!A) -o B) ) -o 0)) -o 0"
by best_power
end