(* Title: HOL/SPARK/SPARK.thy
Author: Stefan Berghofer
Copyright: secunet Security Networks AG
Declaration of proof functions for SPARK/Ada verification environment.
*)
theory SPARK
imports SPARK_Setup
begin
text \<open>Bitwise logical operators\<close>
spark_proof_functions
bit__and (integer, integer) : integer = "(AND)"
bit__or (integer, integer) : integer = "(OR)"
bit__xor (integer, integer) : integer = "(XOR)"
lemmas [simp] =
OR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 8, simplified]
OR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 16, simplified]
OR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 32, simplified]
OR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified]
OR_upper [of _ 64, simplified]
lemmas [simp] =
XOR_upper [of _ 8, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 8, simplified]
XOR_upper [of _ 16, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 16, simplified]
XOR_upper [of _ 32, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 32, simplified]
XOR_upper [of _ 64, simplified zle_diff1_eq [symmetric], simplified]
XOR_upper [of _ 64, simplified]
lemma bit_not_spark_eq:
"NOT (word_of_int x :: ('a::len0) word) =
word_of_int (2 ^ len_of TYPE('a) - 1 - x)"
proof -
have "word_of_int x + NOT (word_of_int x) =
word_of_int x + (word_of_int (2 ^ len_of TYPE('a) - 1 - x)::'a word)"
by (simp only: bwsimps bin_add_not Min_def)
(simp add: word_of_int_hom_syms word_of_int_2p_len)
then show ?thesis by (rule add_left_imp_eq)
qed
lemmas [simp] =
bit_not_spark_eq [where 'a=8, simplified]
bit_not_spark_eq [where 'a=16, simplified]
bit_not_spark_eq [where 'a=32, simplified]
bit_not_spark_eq [where 'a=64, simplified]
text \<open>Minimum and maximum\<close>
spark_proof_functions
integer__min = "min :: int \<Rightarrow> int \<Rightarrow> int"
integer__max = "max :: int \<Rightarrow> int \<Rightarrow> int"
end