(* Title: HOL/Library/While_Combinator.thy
Author: Tobias Nipkow
Author: Alexander Krauss
Copyright 2000 TU Muenchen
*)
header {* A general ``while'' combinator *}
theory While_Combinator
imports Main
begin
subsection {* Partial version *}
definition while_option :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where
"while_option b c s = (if (\<exists>k. ~ b ((c ^^ k) s))
then Some ((c ^^ (LEAST k. ~ b ((c ^^ k) s))) s)
else None)"
theorem while_option_unfold[code]:
"while_option b c s = (if b s then while_option b c (c s) else Some s)"
proof cases
assume "b s"
show ?thesis
proof (cases "\<exists>k. ~ b ((c ^^ k) s)")
case True
then obtain k where 1: "~ b ((c ^^ k) s)" ..
with `b s` obtain l where "k = Suc l" by (cases k) auto
with 1 have "~ b ((c ^^ l) (c s))" by (auto simp: funpow_swap1)
then have 2: "\<exists>l. ~ b ((c ^^ l) (c s))" ..
from 1
have "(LEAST k. ~ b ((c ^^ k) s)) = Suc (LEAST l. ~ b ((c ^^ Suc l) s))"
by (rule Least_Suc) (simp add: `b s`)
also have "... = Suc (LEAST l. ~ b ((c ^^ l) (c s)))"
by (simp add: funpow_swap1)
finally
show ?thesis
using True 2 `b s` by (simp add: funpow_swap1 while_option_def)
next
case False
then have "~ (\<exists>l. ~ b ((c ^^ Suc l) s))" by blast
then have "~ (\<exists>l. ~ b ((c ^^ l) (c s)))"
by (simp add: funpow_swap1)
with False `b s` show ?thesis by (simp add: while_option_def)
qed
next
assume [simp]: "~ b s"
have least: "(LEAST k. ~ b ((c ^^ k) s)) = 0"
by (rule Least_equality) auto
moreover
have "\<exists>k. ~ b ((c ^^ k) s)" by (rule exI[of _ "0::nat"]) auto
ultimately show ?thesis unfolding while_option_def by auto
qed
lemma while_option_stop2:
"while_option b c s = Some t \<Longrightarrow> EX k. t = (c^^k) s \<and> \<not> b t"
apply(simp add: while_option_def split: if_splits)
by (metis (lifting) LeastI_ex)
lemma while_option_stop: "while_option b c s = Some t \<Longrightarrow> ~ b t"
by(metis while_option_stop2)
theorem while_option_rule:
assumes step: "!!s. P s ==> b s ==> P (c s)"
and result: "while_option b c s = Some t"
and init: "P s"
shows "P t"
proof -
def k == "LEAST k. ~ b ((c ^^ k) s)"
from assms have t: "t = (c ^^ k) s"
by (simp add: while_option_def k_def split: if_splits)
have 1: "ALL i<k. b ((c ^^ i) s)"
by (auto simp: k_def dest: not_less_Least)
{ fix i assume "i <= k" then have "P ((c ^^ i) s)"
by (induct i) (auto simp: init step 1) }
thus "P t" by (auto simp: t)
qed
subsection {* Total version *}
definition while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
where "while b c s = the (while_option b c s)"
lemma while_unfold [code]:
"while b c s = (if b s then while b c (c s) else s)"
unfolding while_def by (subst while_option_unfold) simp
lemma def_while_unfold:
assumes fdef: "f == while test do"
shows "f x = (if test x then f(do x) else x)"
unfolding fdef by (fact while_unfold)
text {*
The proof rule for @{term while}, where @{term P} is the invariant.
*}
theorem while_rule_lemma:
assumes invariant: "!!s. P s ==> b s ==> P (c s)"
and terminate: "!!s. P s ==> \<not> b s ==> Q s"
and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
shows "P s \<Longrightarrow> Q (while b c s)"
using wf
apply (induct s)
apply simp
apply (subst while_unfold)
apply (simp add: invariant terminate)
done
theorem while_rule:
"[| P s;
!!s. [| P s; b s |] ==> P (c s);
!!s. [| P s; \<not> b s |] ==> Q s;
wf r;
!!s. [| P s; b s |] ==> (c s, s) \<in> r |] ==>
Q (while b c s)"
apply (rule while_rule_lemma)
prefer 4 apply assumption
apply blast
apply blast
apply (erule wf_subset)
apply blast
done
text{* Proving termination: *}
theorem wf_while_option_Some:
assumes "wf {(t, s). (P s \<and> b s) \<and> t = c s}"
and "!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s)" and "P s"
shows "EX t. while_option b c s = Some t"
using assms(1,3)
apply (induct s)
using assms(2)
apply (subst while_option_unfold)
apply simp
done
theorem measure_while_option_Some: fixes f :: "'s \<Rightarrow> nat"
shows "(!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s) \<and> f(c s) < f s)
\<Longrightarrow> P s \<Longrightarrow> EX t. while_option b c s = Some t"
by(blast intro: wf_while_option_Some[OF wf_if_measure, of P b f])
text{* Kleene iteration starting from the empty set and assuming some finite
bounding set: *}
lemma while_option_finite_subset_Some: fixes C :: "'a set"
assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
shows "\<exists>P. while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
proof(rule measure_while_option_Some[where
f= "%A::'a set. card C - card A" and P= "%A. A \<subseteq> C \<and> A \<subseteq> f A" and s= "{}"])
fix A assume A: "A \<subseteq> C \<and> A \<subseteq> f A" "f A \<noteq> A"
show "(f A \<subseteq> C \<and> f A \<subseteq> f (f A)) \<and> card C - card (f A) < card C - card A"
(is "?L \<and> ?R")
proof
show ?L by(metis A(1) assms(2) monoD[OF `mono f`])
show ?R by (metis A assms(2,3) card_seteq diff_less_mono2 equalityI linorder_le_less_linear rev_finite_subset)
qed
qed simp
lemma lfp_the_while_option:
assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
shows "lfp f = the(while_option (\<lambda>A. f A \<noteq> A) f {})"
proof-
obtain P where "while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
using while_option_finite_subset_Some[OF assms] by blast
with while_option_stop2[OF this] lfp_Kleene_iter[OF assms(1)]
show ?thesis by auto
qed
end