src/HOL/Induct/Tree.thy
 author wenzelm Fri, 17 Nov 2006 02:20:03 +0100 changeset 21404 eb85850d3eb7 parent 19736 d8d0f8f51d69 child 31602 59df8222c204 permissions -rw-r--r--
more robust syntax for definition/abbreviation/notation;
```
(*  Title:      HOL/Induct/Tree.thy
ID:         \$Id\$
Author:     Stefan Berghofer,  TU Muenchen
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

header {* Infinitely branching trees *}

theory Tree imports Main begin

datatype 'a tree =
Atom 'a
| Branch "nat => 'a tree"

consts
map_tree :: "('a => 'b) => 'a tree => 'b tree"
primrec
"map_tree f (Atom a) = Atom (f a)"
"map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))"

lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t"
by (induct t) simp_all

consts
exists_tree :: "('a => bool) => 'a tree => bool"
primrec
"exists_tree P (Atom a) = P a"
"exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))"

lemma exists_map:
"(!!x. P x ==> Q (f x)) ==>
exists_tree P ts ==> exists_tree Q (map_tree f ts)"
by (induct ts) auto

subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*}

datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer"

consts
add :: "[brouwer,brouwer] => brouwer"
primrec
"add i Zero = i"
"add i (Succ j) = Succ (add i j)"
"add i (Lim f) = Lim (%n. add i (f n))"

by (induct k) auto

text{*Multiplication of ordinals*}
consts
mult :: "[brouwer,brouwer] => brouwer"
primrec
"mult i Zero = Zero"
"mult i (Succ j) = add (mult i j) i"
"mult i (Lim f) = Lim (%n. mult i (f n))"

lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)"
by (induct k) (auto simp add: add_assoc)

lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)"
by (induct k) (auto simp add: add_mult_distrib)

text{*We could probably instantiate some axiomatic type classes and use
the standard infix operators.*}

subsection{*A WF Ordering for The Brouwer ordinals (Michael Compton)*}

text{*To define recdef style functions we need an ordering on the Brouwer
ordinals.  Start with a predecessor relation and form its transitive
closure. *}

definition
brouwer_pred :: "(brouwer * brouwer) set" where
"brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})"

definition
brouwer_order :: "(brouwer * brouwer) set" where
"brouwer_order = brouwer_pred^+"

lemma wf_brouwer_pred: "wf brouwer_pred"
by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+)

lemma wf_brouwer_order: "wf brouwer_order"
by(unfold brouwer_order_def, rule wf_trancl[OF wf_brouwer_pred])

lemma [simp]: "(j, Succ j) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)

lemma [simp]: "(f n, Lim f) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)

text{*Example of a recdef*}
consts
add2 :: "(brouwer*brouwer) => brouwer"
recdef add2 "inv_image brouwer_order (\<lambda> (x,y). y)"
"add2 (i, Zero) = i"
"add2 (i, (Succ j)) = Succ (add2 (i, j))"
"add2 (i, (Lim f)) = Lim (\<lambda> n. add2 (i, (f n)))"
(hints recdef_wf: wf_brouwer_order)