(* Title: HOL/NumberTheory/EulerFermat.thy
ID: $Id$
Author: Thomas M. Rasmussen
Copyright 2000 University of Cambridge
*)
header {* Fermat's Little Theorem extended to Euler's Totient function *}
theory EulerFermat imports BijectionRel IntFact begin
text {*
Fermat's Little Theorem extended to Euler's Totient function. More
abstract approach than Boyer-Moore (which seems necessary to achieve
the extended version).
*}
subsection {* Definitions and lemmas *}
consts
RsetR :: "int => int set set"
inductive "RsetR m"
intros
empty [simp]: "{} \<in> RsetR m"
insert: "A \<in> RsetR m ==> zgcd (a, m) = 1 ==>
\<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m"
consts
BnorRset :: "int * int => int set"
recdef BnorRset
"measure ((\<lambda>(a, m). nat a) :: int * int => nat)"
"BnorRset (a, m) =
(if 0 < a then
let na = BnorRset (a - 1, m)
in (if zgcd (a, m) = 1 then insert a na else na)
else {})"
definition
norRRset :: "int => int set" where
"norRRset m = BnorRset (m - 1, m)"
definition
noXRRset :: "int => int => int set" where
"noXRRset m x = (\<lambda>a. a * x) ` norRRset m"
definition
phi :: "int => nat" where
"phi m = card (norRRset m)"
definition
is_RRset :: "int set => int => bool" where
"is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)"
definition
RRset2norRR :: "int set => int => int => int" where
"RRset2norRR A m a =
(if 1 < m \<and> is_RRset A m \<and> a \<in> A then
SOME b. zcong a b m \<and> b \<in> norRRset m
else 0)"
definition
zcongm :: "int => int => int => bool" where
"zcongm m = (\<lambda>a b. zcong a b m)"
lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
-- {* LCP: not sure why this lemma is needed now *}
by (auto simp add: abs_if)
text {* \medskip @{text norRRset} *}
declare BnorRset.simps [simp del]
lemma BnorRset_induct:
assumes "!!a m. P {} a m"
and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
==> P (BnorRset(a,m)) a m"
shows "P (BnorRset(u,v)) u v"
apply (rule BnorRset.induct)
apply safe
apply (case_tac [2] "0 < a")
apply (rule_tac [2] prems)
apply simp_all
apply (simp_all add: BnorRset.simps prems)
done
lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
apply (induct a m rule: BnorRset_induct)
apply simp
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
done
lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
by (auto dest: Bnor_mem_zle)
lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
apply (induct a m rule: BnorRset_induct)
prefer 2
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
done
lemma Bnor_mem_if [rule_format]:
"zgcd (b, m) = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset (a, m)"
apply (induct a m rule: BnorRset.induct, auto)
apply (subst BnorRset.simps)
defer
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
done
lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) \<in> RsetR m"
apply (induct a m rule: BnorRset_induct, simp)
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
apply (rule RsetR.insert)
apply (rule_tac [3] allI)
apply (rule_tac [3] impI)
apply (rule_tac [3] zcong_not)
apply (subgoal_tac [6] "a' \<le> a - 1")
apply (rule_tac [7] Bnor_mem_zle)
apply (rule_tac [5] Bnor_mem_zg, auto)
done
lemma Bnor_fin: "finite (BnorRset (a, m))"
apply (induct a m rule: BnorRset_induct)
prefer 2
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
done
lemma norR_mem_unique_aux: "a \<le> b - 1 ==> a < (b::int)"
apply auto
done
lemma norR_mem_unique:
"1 < m ==>
zgcd (a, m) = 1 ==> \<exists>!b. [a = b] (mod m) \<and> b \<in> norRRset m"
apply (unfold norRRset_def)
apply (cut_tac a = a and m = m in zcong_zless_unique, auto)
apply (rule_tac [2] m = m in zcong_zless_imp_eq)
apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans
order_less_imp_le norR_mem_unique_aux simp add: zcong_sym)
apply (rule_tac x = b in exI, safe)
apply (rule Bnor_mem_if)
apply (case_tac [2] "b = 0")
apply (auto intro: order_less_le [THEN iffD2])
prefer 2
apply (simp only: zcong_def)
apply (subgoal_tac "zgcd (a, m) = m")
prefer 2
apply (subst zdvd_iff_zgcd [symmetric])
apply (rule_tac [4] zgcd_zcong_zgcd)
apply (simp_all add: zdvd_zminus_iff zcong_sym)
done
text {* \medskip @{term noXRRset} *}
lemma RRset_gcd [rule_format]:
"is_RRset A m ==> a \<in> A --> zgcd (a, m) = 1"
apply (unfold is_RRset_def)
apply (rule RsetR.induct, auto)
done
lemma RsetR_zmult_mono:
"A \<in> RsetR m ==>
0 < m ==> zgcd (x, m) = 1 ==> (\<lambda>a. a * x) ` A \<in> RsetR m"
apply (erule RsetR.induct, simp_all)
apply (rule RsetR.insert, auto)
apply (blast intro: zgcd_zgcd_zmult)
apply (simp add: zcong_cancel)
done
lemma card_nor_eq_noX:
"0 < m ==>
zgcd (x, m) = 1 ==> card (noXRRset m x) = card (norRRset m)"
apply (unfold norRRset_def noXRRset_def)
apply (rule card_image)
apply (auto simp add: inj_on_def Bnor_fin)
apply (simp add: BnorRset.simps)
done
lemma noX_is_RRset:
"0 < m ==> zgcd (x, m) = 1 ==> is_RRset (noXRRset m x) m"
apply (unfold is_RRset_def phi_def)
apply (auto simp add: card_nor_eq_noX)
apply (unfold noXRRset_def norRRset_def)
apply (rule RsetR_zmult_mono)
apply (rule Bnor_in_RsetR, simp_all)
done
lemma aux_some:
"1 < m ==> is_RRset A m ==> a \<in> A
==> zcong a (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) m \<and>
(SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) \<in> norRRset m"
apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex])
apply (rule_tac [2] RRset_gcd, simp_all)
done
lemma RRset2norRR_correct:
"1 < m ==> is_RRset A m ==> a \<in> A ==>
[a = RRset2norRR A m a] (mod m) \<and> RRset2norRR A m a \<in> norRRset m"
apply (unfold RRset2norRR_def, simp)
apply (rule aux_some, simp_all)
done
lemmas RRset2norRR_correct1 =
RRset2norRR_correct [THEN conjunct1, standard]
lemmas RRset2norRR_correct2 =
RRset2norRR_correct [THEN conjunct2, standard]
lemma RsetR_fin: "A \<in> RsetR m ==> finite A"
by (induct set: RsetR) auto
lemma RRset_zcong_eq [rule_format]:
"1 < m ==>
is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b"
apply (unfold is_RRset_def)
apply (rule RsetR.induct)
apply (auto simp add: zcong_sym)
done
lemma aux:
"P (SOME a. P a) ==> Q (SOME a. Q a) ==>
(SOME a. P a) = (SOME a. Q a) ==> \<exists>a. P a \<and> Q a"
apply auto
done
lemma RRset2norRR_inj:
"1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A"
apply (unfold RRset2norRR_def inj_on_def, auto)
apply (subgoal_tac "\<exists>b. ([x = b] (mod m) \<and> b \<in> norRRset m) \<and>
([y = b] (mod m) \<and> b \<in> norRRset m)")
apply (rule_tac [2] aux)
apply (rule_tac [3] aux_some)
apply (rule_tac [2] aux_some)
apply (rule RRset_zcong_eq, auto)
apply (rule_tac b = b in zcong_trans)
apply (simp_all add: zcong_sym)
done
lemma RRset2norRR_eq_norR:
"1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m"
apply (rule card_seteq)
prefer 3
apply (subst card_image)
apply (rule_tac RRset2norRR_inj, auto)
apply (rule_tac [3] RRset2norRR_correct2, auto)
apply (unfold is_RRset_def phi_def norRRset_def)
apply (auto simp add: Bnor_fin)
done
lemma Bnor_prod_power_aux: "a \<notin> A ==> inj f ==> f a \<notin> f ` A"
by (unfold inj_on_def, auto)
lemma Bnor_prod_power [rule_format]:
"x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset (a, m)) =
\<Prod>(BnorRset(a, m)) * x^card (BnorRset (a, m))"
apply (induct a m rule: BnorRset_induct)
prefer 2
apply (simplesubst BnorRset.simps) --{*multiple redexes*}
apply (unfold Let_def, auto)
apply (simp add: Bnor_fin Bnor_mem_zle_swap)
apply (subst setprod_insert)
apply (rule_tac [2] Bnor_prod_power_aux)
apply (unfold inj_on_def)
apply (simp_all add: zmult_ac Bnor_fin finite_imageI
Bnor_mem_zle_swap)
done
subsection {* Fermat *}
lemma bijzcong_zcong_prod:
"(A, B) \<in> bijR (zcongm m) ==> [\<Prod>A = \<Prod>B] (mod m)"
apply (unfold zcongm_def)
apply (erule bijR.induct)
apply (subgoal_tac [2] "a \<notin> A \<and> b \<notin> B \<and> finite A \<and> finite B")
apply (auto intro: fin_bijRl fin_bijRr zcong_zmult)
done
lemma Bnor_prod_zgcd [rule_format]:
"a < m --> zgcd (\<Prod>(BnorRset(a, m)), m) = 1"
apply (induct a m rule: BnorRset_induct)
prefer 2
apply (subst BnorRset.simps)
apply (unfold Let_def, auto)
apply (simp add: Bnor_fin Bnor_mem_zle_swap)
apply (blast intro: zgcd_zgcd_zmult)
done
theorem Euler_Fermat:
"0 < m ==> zgcd (x, m) = 1 ==> [x^(phi m) = 1] (mod m)"
apply (unfold norRRset_def phi_def)
apply (case_tac "x = 0")
apply (case_tac [2] "m = 1")
apply (rule_tac [3] iffD1)
apply (rule_tac [3] k = "\<Prod>(BnorRset(m - 1, m))"
in zcong_cancel2)
prefer 5
apply (subst Bnor_prod_power [symmetric])
apply (rule_tac [7] Bnor_prod_zgcd, simp_all)
apply (rule bijzcong_zcong_prod)
apply (fold norRRset_def noXRRset_def)
apply (subst RRset2norRR_eq_norR [symmetric])
apply (rule_tac [3] inj_func_bijR, auto)
apply (unfold zcongm_def)
apply (rule_tac [2] RRset2norRR_correct1)
apply (rule_tac [5] RRset2norRR_inj)
apply (auto intro: order_less_le [THEN iffD2]
simp add: noX_is_RRset)
apply (unfold noXRRset_def norRRset_def)
apply (rule finite_imageI)
apply (rule Bnor_fin)
done
lemma Bnor_prime:
"\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset (a, p)) = nat a"
apply (induct a p rule: BnorRset.induct)
apply (subst BnorRset.simps)
apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime)
apply (subgoal_tac "finite (BnorRset (a - 1,m))")
apply (subgoal_tac "a ~: BnorRset (a - 1,m)")
apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1)
apply (frule Bnor_mem_zle, arith)
apply (frule Bnor_fin)
done
lemma phi_prime: "zprime p ==> phi p = nat (p - 1)"
apply (unfold phi_def norRRset_def)
apply (rule Bnor_prime, auto)
done
theorem Little_Fermat:
"zprime p ==> \<not> p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)"
apply (subst phi_prime [symmetric])
apply (rule_tac [2] Euler_Fermat)
apply (erule_tac [3] zprime_imp_zrelprime)
apply (unfold zprime_def, auto)
done
end