(* Title: CTT/Bool.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
*)
section \<open>The two-element type (booleans and conditionals)\<close>
theory Bool
imports CTT
begin
definition
Bool :: "t" where
"Bool \<equiv> T+T"
definition
true :: "i" where
"true \<equiv> inl(tt)"
definition
false :: "i" where
"false \<equiv> inr(tt)"
definition
cond :: "[i,i,i]\<Rightarrow>i" where
"cond(a,b,c) \<equiv> when(a, \<lambda>u. b, \<lambda>u. c)"
lemmas bool_defs = Bool_def true_def false_def cond_def
subsection \<open>Derivation of rules for the type Bool\<close>
(*formation rule*)
lemma boolF: "Bool type"
apply (unfold bool_defs)
apply typechk
done
(*introduction rules for true, false*)
lemma boolI_true: "true : Bool"
apply (unfold bool_defs)
apply typechk
done
lemma boolI_false: "false : Bool"
apply (unfold bool_defs)
apply typechk
done
(*elimination rule: typing of cond*)
lemma boolE: "\<lbrakk>p:Bool; a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(p,a,b) : C(p)"
apply (unfold bool_defs)
apply typechk
apply (erule_tac [!] TE)
apply typechk
done
lemma boolEL: "\<lbrakk>p = q : Bool; a = c : C(true); b = d : C(false)\<rbrakk>
\<Longrightarrow> cond(p,a,b) = cond(q,c,d) : C(p)"
apply (unfold bool_defs)
apply (rule PlusEL)
apply (erule asm_rl refl_elem [THEN TEL])+
done
(*computation rules for true, false*)
lemma boolC_true: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(true,a,b) = a : C(true)"
apply (unfold bool_defs)
apply (rule comp_rls)
apply typechk
apply (erule_tac [!] TE)
apply typechk
done
lemma boolC_false: "\<lbrakk>a : C(true); b : C(false)\<rbrakk> \<Longrightarrow> cond(false,a,b) = b : C(false)"
apply (unfold bool_defs)
apply (rule comp_rls)
apply typechk
apply (erule_tac [!] TE)
apply typechk
done
end