(* Title: Pure/General/heap.ML
Author: Lawrence C Paulson and Markus Wenzel
Heaps over linearly ordered types. See also Chris Okasaki: "Purely
Functional Data Structures" (Chapter 3), Cambridge University Press,
1998.
*)
signature HEAP =
sig
type elem
type T
val empty: T
val is_empty: T -> bool
val merge: T * T -> T
val insert: elem -> T -> T
val min: T -> elem (*exception Empty*)
val delete_min: T -> T (*exception Empty*)
val min_elem: T -> elem * T (*exception Empty*)
val upto: elem -> T -> elem list * T
end;
functor Heap(type elem val ord: elem * elem -> order): HEAP =
struct
(* datatype heap *)
type elem = elem;
datatype T = Empty | Heap of int * elem * T * T;
(* empty heaps *)
val empty = Empty;
fun is_empty Empty = true
| is_empty (Heap _) = false;
(* build heaps *)
local
fun rank Empty = 0
| rank (Heap (r, _, _, _)) = r;
fun heap x a b =
if rank a >= rank b then Heap (rank b + 1, x, a, b)
else Heap (rank a + 1, x, b, a);
in
fun merge (h, Empty) = h
| merge (Empty, h) = h
| merge (h1 as Heap (_, x1, a1, b1), h2 as Heap (_, x2, a2, b2)) =
(case ord (x1, x2) of
GREATER => heap x2 a2 (merge (h1, b2))
| _ => heap x1 a1 (merge (b1, h2)));
fun insert x h = merge (Heap (1, x, Empty, Empty), h);
end;
(* minimum element *)
fun min Empty = raise List.Empty
| min (Heap (_, x, _, _)) = x;
fun delete_min Empty = raise List.Empty
| delete_min (Heap (_, _, a, b)) = merge (a, b);
fun min_elem h = (min h, delete_min h);
(* initial interval *)
nonfix upto;
fun upto _ Empty = ([], Empty)
| upto limit (h as Heap (_, x, _, _)) =
(case ord (x, limit) of
GREATER => ([], h)
| _ => upto limit (delete_min h) |>> cons x);
end;