more inner-syntax markup;
more syntax bundles for use with "unbundle no foobar_syntax";
section \<open>Extending FOL by a modified version of HOL set theory\<close>
theory Set
imports FOL
begin
declare [[eta_contract]]
typedecl 'a set
instance set :: ("term") "term" ..
subsection \<open>Set comprehension and membership\<close>
axiomatization Collect :: "['a \<Rightarrow> o] \<Rightarrow> 'a set"
and mem :: "['a, 'a set] \<Rightarrow> o" (infixl \<open>:\<close> 50)
where mem_Collect_iff: "(a : Collect(P)) \<longleftrightarrow> P(a)"
and set_extension: "A = B \<longleftrightarrow> (ALL x. x:A \<longleftrightarrow> x:B)"
syntax
"_Coll" :: "[idt, o] \<Rightarrow> 'a set" (\<open>(\<open>indent=1 notation=\<open>mixfix Collect\<close>\<close>{_./ _})\<close>)
translations
"{x. P}" == "CONST Collect(\<lambda>x. P)"
lemma CollectI: "P(a) \<Longrightarrow> a : {x. P(x)}"
apply (rule mem_Collect_iff [THEN iffD2])
apply assumption
done
lemma CollectD: "a : {x. P(x)} \<Longrightarrow> P(a)"
apply (erule mem_Collect_iff [THEN iffD1])
done
lemmas CollectE = CollectD [elim_format]
lemma set_ext: "(\<And>x. x:A \<longleftrightarrow> x:B) \<Longrightarrow> A = B"
apply (rule set_extension [THEN iffD2])
apply simp
done
subsection \<open>Bounded quantifiers\<close>
definition Ball :: "['a set, 'a \<Rightarrow> o] \<Rightarrow> o"
where "Ball(A, P) == ALL x. x:A \<longrightarrow> P(x)"
definition Bex :: "['a set, 'a \<Rightarrow> o] \<Rightarrow> o"
where "Bex(A, P) == EX x. x:A \<and> P(x)"
syntax
"_Ball" :: "[idt, 'a set, o] \<Rightarrow> o" (\<open>(\<open>notation=\<open>binder ALL:\<close>\<close>ALL _:_./ _)\<close> [0, 0, 0] 10)
"_Bex" :: "[idt, 'a set, o] \<Rightarrow> o" (\<open>(\<open>notation=\<open>binder EX:\<close>\<close>EX _:_./ _)\<close> [0, 0, 0] 10)
syntax_consts
"_Ball" == Ball and
"_Bex" == Bex
translations
"ALL x:A. P" == "CONST Ball(A, \<lambda>x. P)"
"EX x:A. P" == "CONST Bex(A, \<lambda>x. P)"
lemma ballI: "(\<And>x. x:A \<Longrightarrow> P(x)) \<Longrightarrow> ALL x:A. P(x)"
by (simp add: Ball_def)
lemma bspec: "\<lbrakk>ALL x:A. P(x); x:A\<rbrakk> \<Longrightarrow> P(x)"
by (simp add: Ball_def)
lemma ballE: "\<lbrakk>ALL x:A. P(x); P(x) \<Longrightarrow> Q; \<not> x:A \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
unfolding Ball_def by blast
lemma bexI: "\<lbrakk>P(x); x:A\<rbrakk> \<Longrightarrow> EX x:A. P(x)"
unfolding Bex_def by blast
lemma bexCI: "\<lbrakk>EX x:A. \<not>P(x) \<Longrightarrow> P(a); a:A\<rbrakk> \<Longrightarrow> EX x:A. P(x)"
unfolding Bex_def by blast
lemma bexE: "\<lbrakk>EX x:A. P(x); \<And>x. \<lbrakk>x:A; P(x)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
unfolding Bex_def by blast
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
lemma ball_rew: "(ALL x:A. True) \<longleftrightarrow> True"
by (blast intro: ballI)
subsubsection \<open>Congruence rules\<close>
lemma ball_cong:
"\<lbrakk>A = A'; \<And>x. x:A' \<Longrightarrow> P(x) \<longleftrightarrow> P'(x)\<rbrakk> \<Longrightarrow>
(ALL x:A. P(x)) \<longleftrightarrow> (ALL x:A'. P'(x))"
by (blast intro: ballI elim: ballE)
lemma bex_cong:
"\<lbrakk>A = A'; \<And>x. x:A' \<Longrightarrow> P(x) \<longleftrightarrow> P'(x)\<rbrakk> \<Longrightarrow>
(EX x:A. P(x)) \<longleftrightarrow> (EX x:A'. P'(x))"
by (blast intro: bexI elim: bexE)
subsection \<open>Further operations\<close>
definition subset :: "['a set, 'a set] \<Rightarrow> o" (infixl \<open><=\<close> 50)
where "A <= B == ALL x:A. x:B"
definition mono :: "['a set \<Rightarrow> 'b set] \<Rightarrow> o"
where "mono(f) == (ALL A B. A <= B \<longrightarrow> f(A) <= f(B))"
definition singleton :: "'a \<Rightarrow> 'a set" (\<open>{_}\<close>)
where "{a} == {x. x=a}"
definition empty :: "'a set" (\<open>{}\<close>)
where "{} == {x. False}"
definition Un :: "['a set, 'a set] \<Rightarrow> 'a set" (infixl \<open>Un\<close> 65)
where "A Un B == {x. x:A | x:B}"
definition Int :: "['a set, 'a set] \<Rightarrow> 'a set" (infixl \<open>Int\<close> 70)
where "A Int B == {x. x:A \<and> x:B}"
definition Compl :: "('a set) \<Rightarrow> 'a set"
where "Compl(A) == {x. \<not>x:A}"
subsection \<open>Big Intersection / Union\<close>
definition INTER :: "['a set, 'a \<Rightarrow> 'b set] \<Rightarrow> 'b set"
where "INTER(A, B) == {y. ALL x:A. y: B(x)}"
definition UNION :: "['a set, 'a \<Rightarrow> 'b set] \<Rightarrow> 'b set"
where "UNION(A, B) == {y. EX x:A. y: B(x)}"
syntax
"_INTER" :: "[idt, 'a set, 'b set] \<Rightarrow> 'b set" (\<open>(\<open>notation=\<open>binder INT:\<close>\<close>INT _:_./ _)\<close> [0, 0, 0] 10)
"_UNION" :: "[idt, 'a set, 'b set] \<Rightarrow> 'b set" (\<open>(\<open>notation=\<open>binder UN:\<close>\<close>UN _:_./ _)\<close> [0, 0, 0] 10)
syntax_consts
"_INTER" == INTER and
"_UNION" == UNION
translations
"INT x:A. B" == "CONST INTER(A, \<lambda>x. B)"
"UN x:A. B" == "CONST UNION(A, \<lambda>x. B)"
definition Inter :: "(('a set)set) \<Rightarrow> 'a set"
where "Inter(S) == (INT x:S. x)"
definition Union :: "(('a set)set) \<Rightarrow> 'a set"
where "Union(S) == (UN x:S. x)"
subsection \<open>Rules for subsets\<close>
lemma subsetI: "(\<And>x. x:A \<Longrightarrow> x:B) \<Longrightarrow> A <= B"
unfolding subset_def by (blast intro: ballI)
(*Rule in Modus Ponens style*)
lemma subsetD: "\<lbrakk>A <= B; c:A\<rbrakk> \<Longrightarrow> c:B"
unfolding subset_def by (blast elim: ballE)
(*Classical elimination rule*)
lemma subsetCE: "\<lbrakk>A <= B; \<not>(c:A) \<Longrightarrow> P; c:B \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (blast dest: subsetD)
lemma subset_refl: "A <= A"
by (blast intro: subsetI)
lemma subset_trans: "\<lbrakk>A <= B; B <= C\<rbrakk> \<Longrightarrow> A <= C"
by (blast intro: subsetI dest: subsetD)
subsection \<open>Rules for equality\<close>
(*Anti-symmetry of the subset relation*)
lemma subset_antisym: "\<lbrakk>A <= B; B <= A\<rbrakk> \<Longrightarrow> A = B"
by (blast intro: set_ext dest: subsetD)
lemmas equalityI = subset_antisym
(* Equality rules from ZF set theory -- are they appropriate here? *)
lemma equalityD1: "A = B \<Longrightarrow> A<=B"
and equalityD2: "A = B \<Longrightarrow> B<=A"
by (simp_all add: subset_refl)
lemma equalityE: "\<lbrakk>A = B; \<lbrakk>A <= B; B <= A\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (simp add: subset_refl)
lemma equalityCE: "\<lbrakk>A = B; \<lbrakk>c:A; c:B\<rbrakk> \<Longrightarrow> P; \<lbrakk>\<not> c:A; \<not> c:B\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (blast elim: equalityE subsetCE)
lemma trivial_set: "{x. x:A} = A"
by (blast intro: equalityI subsetI CollectI dest: CollectD)
subsection \<open>Rules for binary union\<close>
lemma UnI1: "c:A \<Longrightarrow> c : A Un B"
and UnI2: "c:B \<Longrightarrow> c : A Un B"
unfolding Un_def by (blast intro: CollectI)+
(*Classical introduction rule: no commitment to A vs B*)
lemma UnCI: "(\<not>c:B \<Longrightarrow> c:A) \<Longrightarrow> c : A Un B"
by (blast intro: UnI1 UnI2)
lemma UnE: "\<lbrakk>c : A Un B; c:A \<Longrightarrow> P; c:B \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
unfolding Un_def by (blast dest: CollectD)
subsection \<open>Rules for small intersection\<close>
lemma IntI: "\<lbrakk>c:A; c:B\<rbrakk> \<Longrightarrow> c : A Int B"
unfolding Int_def by (blast intro: CollectI)
lemma IntD1: "c : A Int B \<Longrightarrow> c:A"
and IntD2: "c : A Int B \<Longrightarrow> c:B"
unfolding Int_def by (blast dest: CollectD)+
lemma IntE: "\<lbrakk>c : A Int B; \<lbrakk>c:A; c:B\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
by (blast dest: IntD1 IntD2)
subsection \<open>Rules for set complement\<close>
lemma ComplI: "(c:A \<Longrightarrow> False) \<Longrightarrow> c : Compl(A)"
unfolding Compl_def by (blast intro: CollectI)
(*This form, with negated conclusion, works well with the Classical prover.
Negated assumptions behave like formulae on the right side of the notional
turnstile...*)
lemma ComplD: "c : Compl(A) \<Longrightarrow> \<not>c:A"
unfolding Compl_def by (blast dest: CollectD)
lemmas ComplE = ComplD [elim_format]
subsection \<open>Empty sets\<close>
lemma empty_eq: "{x. False} = {}"
by (simp add: empty_def)
lemma emptyD: "a : {} \<Longrightarrow> P"
unfolding empty_def by (blast dest: CollectD)
lemmas emptyE = emptyD [elim_format]
lemma not_emptyD:
assumes "\<not> A={}"
shows "EX x. x:A"
proof -
have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"
by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+
with assms show ?thesis by blast
qed
subsection \<open>Singleton sets\<close>
lemma singletonI: "a : {a}"
unfolding singleton_def by (blast intro: CollectI)
lemma singletonD: "b : {a} \<Longrightarrow> b=a"
unfolding singleton_def by (blast dest: CollectD)
lemmas singletonE = singletonD [elim_format]
subsection \<open>Unions of families\<close>
(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "\<lbrakk>a:A; b: B(a)\<rbrakk> \<Longrightarrow> b: (UN x:A. B(x))"
unfolding UNION_def by (blast intro: bexI CollectI)
lemma UN_E: "\<lbrakk>b : (UN x:A. B(x)); \<And>x. \<lbrakk>x:A; b: B(x)\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding UNION_def by (blast dest: CollectD elim: bexE)
lemma UN_cong: "\<lbrakk>A = B; \<And>x. x:B \<Longrightarrow> C(x) = D(x)\<rbrakk> \<Longrightarrow> (UN x:A. C(x)) = (UN x:B. D(x))"
by (simp add: UNION_def cong: bex_cong)
subsection \<open>Intersections of families\<close>
lemma INT_I: "(\<And>x. x:A \<Longrightarrow> b: B(x)) \<Longrightarrow> b : (INT x:A. B(x))"
unfolding INTER_def by (blast intro: CollectI ballI)
lemma INT_D: "\<lbrakk>b : (INT x:A. B(x)); a:A\<rbrakk> \<Longrightarrow> b: B(a)"
unfolding INTER_def by (blast dest: CollectD bspec)
(*"Classical" elimination rule -- does not require proving X:C *)
lemma INT_E: "\<lbrakk>b : (INT x:A. B(x)); b: B(a) \<Longrightarrow> R; \<not> a:A \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding INTER_def by (blast dest: CollectD bspec)
lemma INT_cong: "\<lbrakk>A = B; \<And>x. x:B \<Longrightarrow> C(x) = D(x)\<rbrakk> \<Longrightarrow> (INT x:A. C(x)) = (INT x:B. D(x))"
by (simp add: INTER_def cong: ball_cong)
subsection \<open>Rules for Unions\<close>
(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI: "\<lbrakk>X:C; A:X\<rbrakk> \<Longrightarrow> A : Union(C)"
unfolding Union_def by (blast intro: UN_I)
lemma UnionE: "\<lbrakk>A : Union(C); \<And>X. \<lbrakk> A:X; X:C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding Union_def by (blast elim: UN_E)
subsection \<open>Rules for Inter\<close>
lemma InterI: "(\<And>X. X:C \<Longrightarrow> A:X) \<Longrightarrow> A : Inter(C)"
unfolding Inter_def by (blast intro: INT_I)
(*A "destruct" rule -- every X in C contains A as an element, but
A:X can hold when X:C does not! This rule is analogous to "spec". *)
lemma InterD: "\<lbrakk>A : Inter(C); X:C\<rbrakk> \<Longrightarrow> A:X"
unfolding Inter_def by (blast dest: INT_D)
(*"Classical" elimination rule -- does not require proving X:C *)
lemma InterE: "\<lbrakk>A : Inter(C); A:X \<Longrightarrow> R; \<not> X:C \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
unfolding Inter_def by (blast elim: INT_E)
section \<open>Derived rules involving subsets; Union and Intersection as lattice operations\<close>
subsection \<open>Big Union -- least upper bound of a set\<close>
lemma Union_upper: "B:A \<Longrightarrow> B <= Union(A)"
by (blast intro: subsetI UnionI)
lemma Union_least: "(\<And>X. X:A \<Longrightarrow> X<=C) \<Longrightarrow> Union(A) <= C"
by (blast intro: subsetI dest: subsetD elim: UnionE)
subsection \<open>Big Intersection -- greatest lower bound of a set\<close>
lemma Inter_lower: "B:A \<Longrightarrow> Inter(A) <= B"
by (blast intro: subsetI dest: InterD)
lemma Inter_greatest: "(\<And>X. X:A \<Longrightarrow> C<=X) \<Longrightarrow> C <= Inter(A)"
by (blast intro: subsetI InterI dest: subsetD)
subsection \<open>Finite Union -- the least upper bound of 2 sets\<close>
lemma Un_upper1: "A <= A Un B"
by (blast intro: subsetI UnI1)
lemma Un_upper2: "B <= A Un B"
by (blast intro: subsetI UnI2)
lemma Un_least: "\<lbrakk>A<=C; B<=C\<rbrakk> \<Longrightarrow> A Un B <= C"
by (blast intro: subsetI elim: UnE dest: subsetD)
subsection \<open>Finite Intersection -- the greatest lower bound of 2 sets\<close>
lemma Int_lower1: "A Int B <= A"
by (blast intro: subsetI elim: IntE)
lemma Int_lower2: "A Int B <= B"
by (blast intro: subsetI elim: IntE)
lemma Int_greatest: "\<lbrakk>C<=A; C<=B\<rbrakk> \<Longrightarrow> C <= A Int B"
by (blast intro: subsetI IntI dest: subsetD)
subsection \<open>Monotonicity\<close>
lemma monoI: "(\<And>A B. A <= B \<Longrightarrow> f(A) <= f(B)) \<Longrightarrow> mono(f)"
unfolding mono_def by blast
lemma monoD: "\<lbrakk>mono(f); A <= B\<rbrakk> \<Longrightarrow> f(A) <= f(B)"
unfolding mono_def by blast
lemma mono_Un: "mono(f) \<Longrightarrow> f(A) Un f(B) <= f(A Un B)"
by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)
lemma mono_Int: "mono(f) \<Longrightarrow> f(A Int B) <= f(A) Int f(B)"
by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)
subsection \<open>Automated reasoning setup\<close>
lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI
and [intro] = bexI UnionI UN_I
and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE
and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE
lemma mem_rews:
"(a : A Un B) \<longleftrightarrow> (a:A | a:B)"
"(a : A Int B) \<longleftrightarrow> (a:A \<and> a:B)"
"(a : Compl(B)) \<longleftrightarrow> (\<not>a:B)"
"(a : {b}) \<longleftrightarrow> (a=b)"
"(a : {}) \<longleftrightarrow> False"
"(a : {x. P(x)}) \<longleftrightarrow> P(a)"
by blast+
lemmas [simp] = trivial_set empty_eq mem_rews
and [cong] = ball_cong bex_cong INT_cong UN_cong
section \<open>Equalities involving union, intersection, inclusion, etc.\<close>
subsection \<open>Binary Intersection\<close>
lemma Int_absorb: "A Int A = A"
by (blast intro: equalityI)
lemma Int_commute: "A Int B = B Int A"
by (blast intro: equalityI)
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"
by (blast intro: equalityI)
lemma Int_Un_distrib: "(A Un B) Int C = (A Int C) Un (B Int C)"
by (blast intro: equalityI)
lemma subset_Int_eq: "(A<=B) \<longleftrightarrow> (A Int B = A)"
by (blast intro: equalityI elim: equalityE)
subsection \<open>Binary Union\<close>
lemma Un_absorb: "A Un A = A"
by (blast intro: equalityI)
lemma Un_commute: "A Un B = B Un A"
by (blast intro: equalityI)
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"
by (blast intro: equalityI)
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"
by (blast intro: equalityI)
lemma Un_Int_crazy:
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"
by (blast intro: equalityI)
lemma subset_Un_eq: "(A<=B) \<longleftrightarrow> (A Un B = B)"
by (blast intro: equalityI elim: equalityE)
subsection \<open>Simple properties of \<open>Compl\<close> -- complement of a set\<close>
lemma Compl_disjoint: "A Int Compl(A) = {x. False}"
by (blast intro: equalityI)
lemma Compl_partition: "A Un Compl(A) = {x. True}"
by (blast intro: equalityI)
lemma double_complement: "Compl(Compl(A)) = A"
by (blast intro: equalityI)
lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"
by (blast intro: equalityI)
lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"
by (blast intro: equalityI)
lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"
by (blast intro: equalityI)
lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"
by (blast intro: equalityI)
(*Halmos, Naive Set Theory, page 16.*)
lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) \<longleftrightarrow> (C<=A)"
by (blast intro: equalityI elim: equalityE)
subsection \<open>Big Union and Intersection\<close>
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"
by (blast intro: equalityI)
lemma Union_disjoint:
"(Union(C) Int A = {x. False}) \<longleftrightarrow> (ALL B:C. B Int A = {x. False})"
by (blast intro: equalityI elim: equalityE)
lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"
by (blast intro: equalityI)
subsection \<open>Unions and Intersections of Families\<close>
lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"
by (blast intro: equalityI)
(*Look: it has an EXISTENTIAL quantifier*)
lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"
by (blast intro: equalityI)
lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"
by (blast intro: equalityI)
lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"
by (blast intro: equalityI)
section \<open>Monotonicity of various operations\<close>
lemma Union_mono: "A<=B \<Longrightarrow> Union(A) <= Union(B)"
by blast
lemma Inter_anti_mono: "B <= A \<Longrightarrow> Inter(A) <= Inter(B)"
by blast
lemma UN_mono: "\<lbrakk>A <= B; \<And>x. x:A \<Longrightarrow> f(x)<=g(x)\<rbrakk> \<Longrightarrow> (UN x:A. f(x)) <= (UN x:B. g(x))"
by blast
lemma INT_anti_mono: "\<lbrakk>B <= A; \<And>x. x:A \<Longrightarrow> f(x) <= g(x)\<rbrakk> \<Longrightarrow> (INT x:A. f(x)) <= (INT x:A. g(x))"
by blast
lemma Un_mono: "\<lbrakk>A <= C; B <= D\<rbrakk> \<Longrightarrow> A Un B <= C Un D"
by blast
lemma Int_mono: "\<lbrakk>A <= C; B <= D\<rbrakk> \<Longrightarrow> A Int B <= C Int D"
by blast
lemma Compl_anti_mono: "A <= B \<Longrightarrow> Compl(B) <= Compl(A)"
by blast
end