(* Title: HOL/ex/Acc.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Inductive definition of acc(r)
See Ch. Paulin-Mohring, Inductive Definitions in the System Coq.
Research Report 92-49, LIP, ENS Lyon. Dec 1992.
*)
header {* The accessible part of a relation *}
theory Acc = Main:
consts
acc :: "('a \<times> 'a) set => 'a set" -- {* accessible part *}
inductive "acc r"
intros
accI [rule_format]:
"\<forall>y. (y, x) \<in> r --> y \<in> acc r ==> x \<in> acc r"
syntax
termi :: "('a \<times> 'a) set => 'a set"
translations
"termi r" == "acc (r^-1)"
theorem acc_induct:
"[| a \<in> acc r;
!!x. [| x \<in> acc r; \<forall>y. (y, x) \<in> r --> P y |] ==> P x
|] ==> P a"
proof -
assume major: "a \<in> acc r"
assume hyp: "!!x. [| x \<in> acc r; \<forall>y. (y, x) \<in> r --> P y |] ==> P x"
show ?thesis
apply (rule major [THEN acc.induct])
apply (rule hyp)
apply (rule accI)
apply fast
apply fast
done
qed
theorem acc_downward: "[| b \<in> acc r; (a, b) \<in> r |] ==> a \<in> acc r"
apply (erule acc.elims)
apply fast
done
lemma acc_downwards_aux: "(b, a) \<in> r^* ==> a \<in> acc r --> b \<in> acc r"
apply (erule rtrancl_induct)
apply blast
apply (blast dest: acc_downward)
done
theorem acc_downwards: "[| a \<in> acc r; (b, a) \<in> r^* |] ==> b \<in> acc r"
apply (blast dest: acc_downwards_aux)
done
theorem acc_wfI: "\<forall>x. x \<in> acc r ==> wf r"
apply (rule wfUNIVI)
apply (induct_tac P x rule: acc_induct)
apply blast
apply blast
done
theorem acc_wfD: "wf r ==> x \<in> acc r"
apply (erule wf_induct)
apply (rule accI)
apply blast
done
theorem wf_acc_iff: "wf r = (\<forall>x. x \<in> acc r)"
apply (blast intro: acc_wfI dest: acc_wfD)
done
end