(* Title: Pure/General/graph.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Directed graphs.
*)
signature GRAPH =
sig
type key
type 'a T
exception UNDEFINED of key
exception DUPLICATE of key
exception CYCLES of key list list
val empty: 'a T
val map : ('a -> 'b) -> 'a T -> 'b T
val foldl : ('a * (key * ('b * (key list * key list))) -> 'a) -> 'a * 'b T -> 'a
val info: 'a T -> key -> 'a
val map_info: ('a -> 'a) -> key -> 'a T -> 'a T
val preds: 'a T -> key -> key list
val succs: 'a T -> key -> key list
val all_preds: 'a T -> key list -> key list
val all_succs: 'a T -> key list -> key list
val find_paths: 'a T -> key * key -> key list list
val add_node: key * 'a -> 'a T -> 'a T
val add_edge: key * key -> 'a T -> 'a T
val add_edge_acyclic: key * key -> 'a T -> 'a T
val derive_node: key * 'a -> key list -> 'a T -> 'a T
end;
functor GraphFun(Key: KEY): GRAPH =
struct
(* keys *)
type key = Key.key;
val eq_key = equal EQUAL o Key.ord;
infix mem_key;
val op mem_key = gen_mem eq_key;
infix ins_key;
val op ins_key = gen_ins eq_key;
(* tables and sets of keys *)
structure Table = TableFun(Key);
type keys = unit Table.table;
infix mem_keys;
fun x mem_keys tab = is_some (Table.lookup (tab: keys, x));
infix ins_keys;
fun x ins_keys tab = if x mem_keys tab then tab else Table.update ((x, ()), tab);
val empty_keys = Table.empty: keys;
fun make_keys xs = foldl (fn (tab, x) => x ins_keys tab) (empty_keys, xs);
fun dest_keys tab = rev (Table.foldl (fn (xs, (x, ())) => x :: xs) ([], tab: keys));
(* datatype of graphs *)
datatype 'a T = Graph of ('a * (key list * key list)) Table.table;
exception UNDEFINED of key;
exception DUPLICATE of key;
exception CYCLES of key list list;
(* basic operations *)
fun map_graph f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab);
fun foldl_graph f (x, Graph tab) = Table.foldl f (x, tab);
val empty = Graph Table.empty;
fun get_node (Graph tab) x =
(case Table.lookup (tab, x) of
Some node => node
| None => raise UNDEFINED x);
fun info G = #1 o get_node G;
fun preds G = #1 o #2 o get_node G;
fun succs G = #2 o #2 o get_node G;
fun map_node f x (G as Graph tab) =
let val node = get_node G x
in Graph (Table.update ((x, f node), tab)) end;
fun map_info f = map_node (fn (info, ps) => (f info, ps));
(* reachable nodes *)
fun reachable_keys next xs =
let
fun reach (R, x) =
if x mem_keys R then R
else reachs (x ins_keys R, next x)
and reachs R_xs = foldl reach R_xs;
in reachs (empty_keys, xs) end;
val reachable = dest_keys oo reachable_keys;
fun all_preds G = reachable (preds G);
fun all_succs G = reachable (succs G);
(* find_paths *)
fun find_paths G (x, y) =
let
val X = reachable_keys (succs G) [x];
fun paths ps p =
if eq_key (p, x) then [p :: ps]
else flat (map (paths (p :: ps))
(filter (fn pp => pp mem_keys X andalso not (pp mem_key ps)) (preds G p)));
in if y mem_keys X then (paths [] y) else [] end;
(* build graphs *)
fun add_node (x, info) (Graph tab) =
Graph (Table.update_new ((x, (info, ([], []))), tab)
handle Table.DUP key => raise DUPLICATE key);
fun add_edge (x, y) G =
(get_node G x; get_node G y;
G |> map_node (fn (i, (preds, succs)) => (i, (preds, y ins_key succs))) x
|> map_node (fn (i, (preds, succs)) => (i, (x ins_key preds, succs))) y);
fun add_edge_acyclic (x, y) G =
(case find_paths G (y, x) of
[] => add_edge (x, y) G
| cycles => raise CYCLES (map (cons x) cycles));
fun derive_node (x, y) zs G =
foldl (fn (H, z) => add_edge_acyclic (z, x) H) (add_node (x, y) G, zs);
(*final declarations of this structure!*)
val map = map_graph;
val foldl = foldl_graph;
end;
(*graphs indexed by strings*)
structure Graph = GraphFun(type key = string val ord = string_ord);