(* Title: Tools/case_product.ML
Author: Lars Noschinski, TU Muenchen
Combine two case rules into a single one.
Assumes that the theorems are of the form
"[| C1; ...; Cm; A1 ==> P; ...; An ==> P |] ==> P"
where m is given by the "consumes" attribute of the theorem.
*)
signature CASE_PRODUCT =
sig
val combine: Proof.context -> thm -> thm -> thm
val combine_annotated: Proof.context -> thm -> thm -> thm
val annotation: thm -> thm -> attribute
end
structure Case_Product: CASE_PRODUCT =
struct
(*instantiate the conclusion of thm2 to the one of thm1*)
fun inst_concl thm1 thm2 =
let
val cconcl_of = Drule.strip_imp_concl o Thm.cprop_of
in Thm.instantiate (Thm.match (cconcl_of thm2, cconcl_of thm1)) thm2 end
fun inst_thms thm1 thm2 ctxt =
let
val import = yield_singleton (apfst snd oo Variable.import true)
val (i_thm1, ctxt') = import thm1 ctxt
val (i_thm2, ctxt'') = import (inst_concl i_thm1 thm2) ctxt'
in ((i_thm1, i_thm2), ctxt'') end
(*
Return list of prems, where loose bounds have been replaced by frees.
FIXME: Focus
*)
fun free_prems t ctxt =
let
val bs = Term.strip_all_vars t
val (names, ctxt') = Variable.variant_fixes (map fst bs) ctxt
val subst = map Free (names ~~ map snd bs)
val t' = map (Term.subst_bounds o pair (rev subst)) (Logic.strip_assums_hyp t)
in ((t', subst), ctxt') end
fun build_concl_prems thm1 thm2 ctxt =
let
val concl = Thm.concl_of thm1
fun is_consumes t = not (Logic.strip_assums_concl t aconv concl)
val (p_cons1, p_cases1) = chop_prefix is_consumes (Thm.prems_of thm1)
val (p_cons2, p_cases2) = chop_prefix is_consumes (Thm.prems_of thm2)
val p_cases_prod = map (fn p1 => map (fn p2 =>
let
val (((t1, subst1), (t2, subst2)), _) = ctxt
|> free_prems p1 ||>> free_prems p2
in
Logic.list_implies (t1 @ t2, concl)
|> fold_rev Logic.all (subst1 @ subst2)
end) p_cases2) p_cases1
val prems = p_cons1 :: p_cons2 :: p_cases_prod
in
(concl, prems)
end
fun case_product_tac ctxt prems struc thm1 thm2 =
let
val (p_cons1 :: p_cons2 :: premss) = unflat struc prems
val thm2' = thm2 OF p_cons2
in
resolve_tac ctxt [thm1 OF p_cons1]
THEN' EVERY' (map (fn p =>
resolve_tac ctxt [thm2'] THEN'
EVERY' (map (Proof_Context.fact_tac ctxt o single) p)) premss)
end
fun combine ctxt thm1 thm2 =
let
val ((i_thm1, i_thm2), ctxt') = inst_thms thm1 thm2 ctxt
val (concl, prems_rich) = build_concl_prems i_thm1 i_thm2 ctxt'
in
Goal.prove ctxt' [] (flat prems_rich) concl
(fn {context = ctxt'', prems} =>
case_product_tac ctxt'' prems prems_rich i_thm1 i_thm2 1)
|> singleton (Variable.export ctxt' ctxt)
end
fun annotation_rule thm1 thm2 =
let
val (cases1, cons1) = apfst (map fst) (Rule_Cases.get thm1)
val (cases2, cons2) = apfst (map fst) (Rule_Cases.get thm2)
val names = map_product (fn (x, _) => fn (y, _) => x ^ "_" ^ y) cases1 cases2
in
Rule_Cases.name names o Rule_Cases.put_consumes (SOME (cons1 + cons2))
end
fun annotation thm1 thm2 =
Thm.rule_attribute [thm1, thm2] (K (annotation_rule thm1 thm2))
fun combine_annotated ctxt thm1 thm2 =
combine ctxt thm1 thm2
|> annotation_rule thm1 thm2
(* attribute setup *)
val _ =
Theory.setup
(Attrib.setup \<^binding>\<open>case_product\<close>
let
fun combine_list ctxt = fold (fn x => fn y => combine_annotated ctxt y x)
in
Attrib.thms >> (fn thms => Thm.rule_attribute thms (fn ctxt => fn thm =>
combine_list (Context.proof_of ctxt) thms thm))
end
"product with other case rules")
end