(* Title: Tools/Code/code_thingol.ML
Author: Florian Haftmann, TU Muenchen
Intermediate language ("Thin-gol") representing executable code.
Representation and translation.
*)
infix 8 `%%;
infix 4 `$;
infix 4 `$$;
infixr 3 `|=>;
infixr 3 `|==>;
signature BASIC_CODE_THINGOL =
sig
type vname = string;
datatype dict =
DictConst of string * dict list list
| DictVar of string list * (vname * (int * int));
datatype itype =
`%% of string * itype list
| ITyVar of vname;
type const = string * ((itype list * dict list list) * itype list (*types of arguments*))
datatype iterm =
IConst of const
| IVar of vname option
| `$ of iterm * iterm
| `|=> of (vname option * itype) * iterm
| ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
(*((term, type), [(selector pattern, body term )]), primitive term)*)
val `$$ : iterm * iterm list -> iterm;
val `|==> : (vname option * itype) list * iterm -> iterm;
type typscheme = (vname * sort) list * itype;
end;
signature CODE_THINGOL =
sig
include BASIC_CODE_THINGOL
val fun_tyco: string
val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
val unfold_fun: itype -> itype list * itype
val unfold_fun_n: int -> itype -> itype list * itype
val unfold_app: iterm -> iterm * iterm list
val unfold_abs: iterm -> (vname option * itype) list * iterm
val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
val unfold_const_app: iterm -> (const * iterm list) option
val is_IVar: iterm -> bool
val eta_expand: int -> const * iterm list -> iterm
val contains_dictvar: iterm -> bool
val locally_monomorphic: iterm -> bool
val add_constnames: iterm -> string list -> string list
val add_tyconames: iterm -> string list -> string list
val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
type naming
val empty_naming: naming
val lookup_class: naming -> class -> string option
val lookup_classrel: naming -> class * class -> string option
val lookup_tyco: naming -> string -> string option
val lookup_instance: naming -> class * string -> string option
val lookup_const: naming -> string -> string option
val ensure_declared_const: theory -> string -> naming -> string * naming
datatype stmt =
NoStmt
| Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
| Datatype of string * ((vname * sort) list *
((string * vname list (*type argument wrt. canonical order*)) * itype list) list)
| Datatypecons of string * string
| Class of class * (vname * ((class * string) list * (string * itype) list))
| Classrel of class * class
| Classparam of string * class
| Classinst of (class * (string * (vname * sort) list) (*class and arity*))
* ((class * (string * (string * dict list list))) list (*super instances*)
* (((string * const) * (thm * bool)) list (*class parameter instances*)
* ((string * const) * (thm * bool)) list (*super class parameter instances*)))
type program = stmt Graph.T
val empty_funs: program -> string list
val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
val is_cons: program -> string -> bool
val is_case: stmt -> bool
val contr_classparam_typs: program -> string -> itype option list
val labelled_name: theory -> program -> string -> string
val group_stmts: theory -> program
-> ((string * stmt) list * (string * stmt) list
* ((string * stmt) list * (string * stmt) list)) list
val read_const_exprs: theory -> string list -> string list * string list
val consts_program: theory -> bool -> string list -> string list * (naming * program)
val eval_conv: theory
-> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> cterm -> thm)
-> cterm -> thm
val eval: theory -> ((term -> term) -> 'a -> 'a)
-> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
-> term -> 'a
end;
structure Code_Thingol: CODE_THINGOL =
struct
(** auxiliary **)
fun unfoldl dest x =
case dest x
of NONE => (x, [])
| SOME (x1, x2) =>
let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
fun unfoldr dest x =
case dest x
of NONE => ([], x)
| SOME (x1, x2) =>
let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
(** language core - types, terms **)
type vname = string;
datatype dict =
DictConst of string * dict list list
| DictVar of string list * (vname * (int * int));
datatype itype =
`%% of string * itype list
| ITyVar of vname;
type const = string * ((itype list * dict list list) * itype list (*types of arguments*))
datatype iterm =
IConst of const
| IVar of vname option
| `$ of iterm * iterm
| `|=> of (vname option * itype) * iterm
| ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
(*see also signature*)
fun is_IVar (IVar _) = true
| is_IVar _ = false;
val op `$$ = Library.foldl (op `$);
val op `|==> = Library.foldr (op `|=>);
val unfold_app = unfoldl
(fn op `$ t => SOME t
| _ => NONE);
val unfold_abs = unfoldr
(fn op `|=> t => SOME t
| _ => NONE);
val split_let =
(fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t)
| _ => NONE);
val unfold_let = unfoldr split_let;
fun unfold_const_app t =
case unfold_app t
of (IConst c, ts) => SOME (c, ts)
| _ => NONE;
fun fold_constexprs f =
let
fun fold' (IConst c) = f c
| fold' (IVar _) = I
| fold' (t1 `$ t2) = fold' t1 #> fold' t2
| fold' (_ `|=> t) = fold' t
| fold' (ICase (((t, _), ds), _)) = fold' t
#> fold (fn (pat, body) => fold' pat #> fold' body) ds
in fold' end;
val add_constnames = fold_constexprs (fn (c, _) => insert (op =) c);
fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
| add_tycos (ITyVar _) = I;
val add_tyconames = fold_constexprs (fn (_, ((tys, _), _)) => fold add_tycos tys);
fun fold_varnames f =
let
fun fold_aux add f =
let
fun fold_term _ (IConst _) = I
| fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
| fold_term _ (IVar NONE) = I
| fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
| fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
| fold_term vs ((NONE, _) `|=> t) = fold_term vs t
| fold_term vs (ICase (((t, _), ds), _)) = fold_term vs t #> fold (fold_case vs) ds
and fold_case vs (p, t) = fold_term (add p vs) t;
in fold_term [] end;
fun add t = fold_aux add (insert (op =)) t;
in fold_aux add f end;
fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
| split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
of ICase (((IVar (SOME w), _), [(p, t')]), _) =>
if v = w andalso (exists_var p v orelse not (exists_var t' v))
then ((p, ty), t')
else ((IVar (SOME v), ty), t)
| _ => ((IVar (SOME v), ty), t))
| split_pat_abs _ = NONE;
val unfold_pat_abs = unfoldr split_pat_abs;
fun unfold_abs_eta [] t = ([], t)
| unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
let
val (vs_tys, t') = unfold_abs_eta tys t;
in (v_ty :: vs_tys, t') end
| unfold_abs_eta tys t =
let
val ctxt = fold_varnames Name.declare t Name.context;
val vs_tys = (map o apfst) SOME (Name.names ctxt "a" tys);
in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
fun eta_expand k (c as (name, (_, tys)), ts) =
let
val j = length ts;
val l = k - j;
val _ = if l > length tys
then error ("Impossible eta-expansion for constant " ^ quote name) else ();
val ctxt = (fold o fold_varnames) Name.declare ts Name.context;
val vs_tys = (map o apfst) SOME
(Name.names ctxt "a" ((take l o drop j) tys));
in vs_tys `|==> IConst c `$$ ts @ map (IVar o fst) vs_tys end;
fun contains_dictvar t =
let
fun cont_dict (DictConst (_, dss)) = (exists o exists) cont_dict dss
| cont_dict (DictVar _) = true;
fun cont_term (IConst (_, ((_, dss), _))) = (exists o exists) cont_dict dss
| cont_term (IVar _) = false
| cont_term (t1 `$ t2) = cont_term t1 orelse cont_term t2
| cont_term (_ `|=> t) = cont_term t
| cont_term (ICase (_, t)) = cont_term t;
in cont_term t end;
fun locally_monomorphic (IConst _) = false
| locally_monomorphic (IVar _) = true
| locally_monomorphic (t `$ _) = locally_monomorphic t
| locally_monomorphic (_ `|=> t) = locally_monomorphic t
| locally_monomorphic (ICase ((_, ds), _)) = exists (locally_monomorphic o snd) ds;
(** namings **)
(* policies *)
local
fun thyname_of_class thy = #theory_name o Name_Space.the_entry (Sign.class_space thy);
fun thyname_of_instance thy inst = case AxClass.thynames_of_arity thy inst
of [] => error ("No such instance: " ^ quote (snd inst ^ " :: " ^ fst inst))
| thyname :: _ => thyname;
fun thyname_of_const thy c = case AxClass.class_of_param thy c
of SOME class => thyname_of_class thy class
| NONE => (case Code.get_type_of_constr_or_abstr thy c
of SOME (tyco, _) => Codegen.thyname_of_type thy tyco
| NONE => Codegen.thyname_of_const thy c);
fun purify_base "==>" = "follows"
| purify_base "op &" = "and"
| purify_base "op |" = "or"
| purify_base "op -->" = "implies"
| purify_base "op =" = "eq"
| purify_base s = Name.desymbolize false s;
fun namify thy get_basename get_thyname name =
let
val prefix = get_thyname thy name;
val base = (purify_base o get_basename) name;
in Long_Name.append prefix base end;
in
fun namify_class thy = namify thy Long_Name.base_name thyname_of_class;
fun namify_classrel thy = namify thy (fn (sub_class, super_class) =>
Long_Name.base_name super_class ^ "_" ^ Long_Name.base_name sub_class)
(fn thy => thyname_of_class thy o fst);
(*order fits nicely with composed projections*)
fun namify_tyco thy "fun" = "Pure.fun"
| namify_tyco thy tyco = namify thy Long_Name.base_name Codegen.thyname_of_type tyco;
fun namify_instance thy = namify thy (fn (class, tyco) =>
Long_Name.base_name class ^ "_" ^ Long_Name.base_name tyco) thyname_of_instance;
fun namify_const thy = namify thy Long_Name.base_name thyname_of_const;
end; (* local *)
(* data *)
datatype naming = Naming of {
class: class Symtab.table * Name.context,
classrel: string Symreltab.table * Name.context,
tyco: string Symtab.table * Name.context,
instance: string Symreltab.table * Name.context,
const: string Symtab.table * Name.context
}
fun dest_Naming (Naming naming) = naming;
val empty_naming = Naming {
class = (Symtab.empty, Name.context),
classrel = (Symreltab.empty, Name.context),
tyco = (Symtab.empty, Name.context),
instance = (Symreltab.empty, Name.context),
const = (Symtab.empty, Name.context)
};
local
fun mk_naming (class, classrel, tyco, instance, const) =
Naming { class = class, classrel = classrel,
tyco = tyco, instance = instance, const = const };
fun map_naming f (Naming { class, classrel, tyco, instance, const }) =
mk_naming (f (class, classrel, tyco, instance, const));
in
fun map_class f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(f class, classrel, tyco, inst, const));
fun map_classrel f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, f classrel, tyco, inst, const));
fun map_tyco f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, f tyco, inst, const));
fun map_instance f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, tyco, f inst, const));
fun map_const f = map_naming
(fn (class, classrel, tyco, inst, const) =>
(class, classrel, tyco, inst, f const));
end; (*local*)
fun add_variant update (thing, name) (tab, used) =
let
val (name', used') = yield_singleton Name.variants name used;
val tab' = update (thing, name') tab;
in (tab', used') end;
fun declare thy mapp lookup update namify thing =
mapp (add_variant update (thing, namify thy thing))
#> `(fn naming => the (lookup naming thing));
(* lookup and declare *)
local
val suffix_class = "class";
val suffix_classrel = "classrel"
val suffix_tyco = "tyco";
val suffix_instance = "inst";
val suffix_const = "const";
fun add_suffix nsp NONE = NONE
| add_suffix nsp (SOME name) = SOME (Long_Name.append name nsp);
in
val lookup_class = add_suffix suffix_class
oo Symtab.lookup o fst o #class o dest_Naming;
val lookup_classrel = add_suffix suffix_classrel
oo Symreltab.lookup o fst o #classrel o dest_Naming;
val lookup_tyco = add_suffix suffix_tyco
oo Symtab.lookup o fst o #tyco o dest_Naming;
val lookup_instance = add_suffix suffix_instance
oo Symreltab.lookup o fst o #instance o dest_Naming;
val lookup_const = add_suffix suffix_const
oo Symtab.lookup o fst o #const o dest_Naming;
fun declare_class thy = declare thy map_class
lookup_class Symtab.update_new namify_class;
fun declare_classrel thy = declare thy map_classrel
lookup_classrel Symreltab.update_new namify_classrel;
fun declare_tyco thy = declare thy map_tyco
lookup_tyco Symtab.update_new namify_tyco;
fun declare_instance thy = declare thy map_instance
lookup_instance Symreltab.update_new namify_instance;
fun declare_const thy = declare thy map_const
lookup_const Symtab.update_new namify_const;
fun ensure_declared_const thy const naming =
case lookup_const naming const
of SOME const' => (const', naming)
| NONE => declare_const thy const naming;
val fun_tyco = Long_Name.append (namify_tyco Pure.thy "fun") suffix_tyco
(*depends on add_suffix*);
val unfold_fun = unfoldr
(fn tyco `%% [ty1, ty2] => if tyco = fun_tyco then SOME (ty1, ty2) else NONE
| _ => NONE);
fun unfold_fun_n n ty =
let
val (tys1, ty1) = unfold_fun ty;
val (tys3, tys2) = chop n tys1;
val ty3 = Library.foldr (fn (ty1, ty2) => fun_tyco `%% [ty1, ty2]) (tys2, ty1);
in (tys3, ty3) end;
end; (* local *)
(** statements, abstract programs **)
type typscheme = (vname * sort) list * itype;
datatype stmt =
NoStmt
| Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
| Datatype of string * ((vname * sort) list * ((string * vname list) * itype list) list)
| Datatypecons of string * string
| Class of class * (vname * ((class * string) list * (string * itype) list))
| Classrel of class * class
| Classparam of string * class
| Classinst of (class * (string * (vname * sort) list))
* ((class * (string * (string * dict list list))) list
* (((string * const) * (thm * bool)) list
* ((string * const) * (thm * bool)) list))
(*see also signature*);
type program = stmt Graph.T;
fun empty_funs program =
Graph.fold (fn (name, (Fun (c, ((_, []), _)), _)) => cons c
| _ => I) program [];
fun map_terms_bottom_up f (t as IConst _) = f t
| map_terms_bottom_up f (t as IVar _) = f t
| map_terms_bottom_up f (t1 `$ t2) = f
(map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
| map_terms_bottom_up f ((v, ty) `|=> t) = f
((v, ty) `|=> map_terms_bottom_up f t)
| map_terms_bottom_up f (ICase (((t, ty), ps), t0)) = f
(ICase (((map_terms_bottom_up f t, ty), (map o pairself)
(map_terms_bottom_up f) ps), map_terms_bottom_up f t0));
fun map_classparam_instances_as_term f =
(map o apfst o apsnd) (fn const => case f (IConst const) of IConst const' => const')
fun map_terms_stmt f NoStmt = NoStmt
| map_terms_stmt f (Fun (c, ((tysm, eqs), case_cong))) = Fun (c, ((tysm, (map o apfst)
(fn (ts, t) => (map f ts, f t)) eqs), case_cong))
| map_terms_stmt f (stmt as Datatype _) = stmt
| map_terms_stmt f (stmt as Datatypecons _) = stmt
| map_terms_stmt f (stmt as Class _) = stmt
| map_terms_stmt f (stmt as Classrel _) = stmt
| map_terms_stmt f (stmt as Classparam _) = stmt
| map_terms_stmt f (Classinst (arity, (super_instances, classparam_instances))) =
Classinst (arity, (super_instances, (pairself o map_classparam_instances_as_term) f classparam_instances));
fun is_cons program name = case Graph.get_node program name
of Datatypecons _ => true
| _ => false;
fun is_case (Fun (_, (_, SOME _))) = true
| is_case _ = false;
fun contr_classparam_typs program name = case Graph.get_node program name
of Classparam (_, class) => let
val Class (_, (_, (_, params))) = Graph.get_node program class;
val SOME ty = AList.lookup (op =) params name;
val (tys, res_ty) = unfold_fun ty;
fun no_tyvar (_ `%% tys) = forall no_tyvar tys
| no_tyvar (ITyVar _) = false;
in if no_tyvar res_ty
then map (fn ty => if no_tyvar ty then NONE else SOME ty) tys
else []
end
| _ => [];
fun labelled_name thy program name = case Graph.get_node program name
of Fun (c, _) => quote (Code.string_of_const thy c)
| Datatype (tyco, _) => "type " ^ quote (Sign.extern_type thy tyco)
| Datatypecons (c, _) => quote (Code.string_of_const thy c)
| Class (class, _) => "class " ^ quote (Sign.extern_class thy class)
| Classrel (sub, super) => let
val Class (sub, _) = Graph.get_node program sub
val Class (super, _) = Graph.get_node program super
in quote (Sign.extern_class thy sub ^ " < " ^ Sign.extern_class thy super) end
| Classparam (c, _) => quote (Code.string_of_const thy c)
| Classinst ((class, (tyco, _)), _) => let
val Class (class, _) = Graph.get_node program class
val Datatype (tyco, _) = Graph.get_node program tyco
in quote (Sign.extern_type thy tyco ^ " :: " ^ Sign.extern_class thy class) end
fun linear_stmts program =
rev (Graph.strong_conn program)
|> map (AList.make (Graph.get_node program));
fun group_stmts thy program =
let
fun is_fun (_, Fun _) = true | is_fun _ = false;
fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
fun is_class (_, Class _) = true | is_class _ = false;
fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
fun group stmts =
if forall (is_datatypecons orf is_datatype) stmts
then (filter is_datatype stmts, [], ([], []))
else if forall (is_class orf is_classrel orf is_classparam) stmts
then ([], filter is_class stmts, ([], []))
else if forall (is_fun orf is_classinst) stmts
then ([], [], List.partition is_fun stmts)
else error ("Illegal mutual dependencies: " ^
(commas o map (labelled_name thy program o fst)) stmts)
in
linear_stmts program
|> map group
end;
(** translation kernel **)
(* generic mechanisms *)
fun ensure_stmt lookup declare generate thing (dep, (naming, program)) =
let
fun add_dep name = case dep of NONE => I
| SOME dep => Graph.add_edge (dep, name);
val (name, naming') = case lookup naming thing
of SOME name => (name, naming)
| NONE => declare thing naming;
in case try (Graph.get_node program) name
of SOME stmt => program
|> add_dep name
|> pair naming'
|> pair dep
|> pair name
| NONE => program
|> Graph.default_node (name, NoStmt)
|> add_dep name
|> pair naming'
|> curry generate (SOME name)
||> snd
|-> (fn stmt => (apsnd o Graph.map_node name) (K stmt))
|> pair dep
|> pair name
end;
exception PERMISSIVE of unit;
fun translation_error thy permissive some_thm msg sub_msg =
if permissive
then raise PERMISSIVE ()
else let
val err_thm = case some_thm
of SOME thm => "\n(in code equation " ^ Display.string_of_thm_global thy thm ^ ")"
| NONE => "";
in error (msg ^ err_thm ^ ":\n" ^ sub_msg) end;
fun not_wellsorted thy permissive some_thm ty sort e =
let
val err_class = Sorts.class_error (Syntax.pp_global thy) e;
val err_typ = "Type " ^ Syntax.string_of_typ_global thy ty ^ " not of sort "
^ Syntax.string_of_sort_global thy sort;
in translation_error thy permissive some_thm "Wellsortedness error" (err_typ ^ "\n" ^ err_class) end;
(* translation *)
fun ensure_tyco thy algbr eqngr permissive tyco =
let
val (vs, cos) = Code.get_type thy tyco;
val stmt_datatype =
fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
##>> fold_map (fn ((c, vs), tys) =>
ensure_const thy algbr eqngr permissive c
##>> pair (map (unprefix "'") vs)
##>> fold_map (translate_typ thy algbr eqngr permissive) tys) cos
#>> (fn info => Datatype (tyco, info));
in ensure_stmt lookup_tyco (declare_tyco thy) stmt_datatype tyco end
and ensure_const thy algbr eqngr permissive c =
let
fun stmt_datatypecons tyco =
ensure_tyco thy algbr eqngr permissive tyco
#>> (fn tyco => Datatypecons (c, tyco));
fun stmt_classparam class =
ensure_class thy algbr eqngr permissive class
#>> (fn class => Classparam (c, class));
fun stmt_fun cert =
let
val ((vs, ty), eqns) = Code.equations_of_cert thy cert;
val some_case_cong = Code.get_case_cong thy c;
in
fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
##>> translate_typ thy algbr eqngr permissive ty
##>> translate_eqns thy algbr eqngr permissive eqns
#>> (fn info => Fun (c, (info, some_case_cong)))
end;
val stmt_const = case Code.get_type_of_constr_or_abstr thy c
of SOME (tyco, _) => stmt_datatypecons tyco
| NONE => (case AxClass.class_of_param thy c
of SOME class => stmt_classparam class
| NONE => stmt_fun (Code_Preproc.cert eqngr c))
in ensure_stmt lookup_const (declare_const thy) stmt_const c end
and ensure_class thy (algbr as (_, algebra)) eqngr permissive class =
let
val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
val cs = #params (AxClass.get_info thy class);
val stmt_class =
fold_map (fn super_class => ensure_class thy algbr eqngr permissive super_class
##>> ensure_classrel thy algbr eqngr permissive (class, super_class)) super_classes
##>> fold_map (fn (c, ty) => ensure_const thy algbr eqngr permissive c
##>> translate_typ thy algbr eqngr permissive ty) cs
#>> (fn info => Class (class, (unprefix "'" Name.aT, info)))
in ensure_stmt lookup_class (declare_class thy) stmt_class class end
and ensure_classrel thy algbr eqngr permissive (sub_class, super_class) =
let
val stmt_classrel =
ensure_class thy algbr eqngr permissive sub_class
##>> ensure_class thy algbr eqngr permissive super_class
#>> Classrel;
in ensure_stmt lookup_classrel (declare_classrel thy) stmt_classrel (sub_class, super_class) end
and ensure_inst thy (algbr as (_, algebra)) eqngr permissive (class, tyco) =
let
val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
val these_classparams = these o try (#params o AxClass.get_info thy);
val classparams = these_classparams class;
val further_classparams = maps these_classparams
((Sorts.complete_sort algebra o Sorts.super_classes algebra) class);
val vs = Name.names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
val arity_typ = Type (tyco, map TFree vs);
val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
fun translate_super_instance super_class =
ensure_class thy algbr eqngr permissive super_class
##>> ensure_classrel thy algbr eqngr permissive (class, super_class)
##>> translate_dicts thy algbr eqngr permissive NONE (arity_typ, [super_class])
#>> (fn ((super_class, classrel), [DictConst (inst, dss)]) =>
(super_class, (classrel, (inst, dss))));
fun translate_classparam_instance (c, ty) =
let
val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
val thm = AxClass.unoverload_conv thy (Thm.cterm_of thy raw_const);
val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
o Logic.dest_equals o Thm.prop_of) thm;
in
ensure_const thy algbr eqngr permissive c
##>> translate_const thy algbr eqngr permissive (SOME thm) (const, NONE)
#>> (fn (c, IConst const') => ((c, const'), (thm, true)))
end;
val stmt_inst =
ensure_class thy algbr eqngr permissive class
##>> ensure_tyco thy algbr eqngr permissive tyco
##>> fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
##>> fold_map translate_super_instance super_classes
##>> fold_map translate_classparam_instance classparams
##>> fold_map translate_classparam_instance further_classparams
#>> (fn (((((class, tyco), arity_args), super_instances),
classparam_instances), further_classparam_instances) =>
Classinst ((class, (tyco, arity_args)), (super_instances,
(classparam_instances, further_classparam_instances))));
in ensure_stmt lookup_instance (declare_instance thy) stmt_inst (class, tyco) end
and translate_typ thy algbr eqngr permissive (TFree (v, _)) =
pair (ITyVar (unprefix "'" v))
| translate_typ thy algbr eqngr permissive (Type (tyco, tys)) =
ensure_tyco thy algbr eqngr permissive tyco
##>> fold_map (translate_typ thy algbr eqngr permissive) tys
#>> (fn (tyco, tys) => tyco `%% tys)
and translate_term thy algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
translate_app thy algbr eqngr permissive some_thm (((c, ty), []), some_abs)
| translate_term thy algbr eqngr permissive some_thm (Free (v, _), some_abs) =
pair (IVar (SOME v))
| translate_term thy algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
let
val (v', t') = Syntax.variant_abs (Name.desymbolize false v, ty, t);
val v'' = if member (op =) (Term.add_free_names t' []) v'
then SOME v' else NONE
in
translate_typ thy algbr eqngr permissive ty
##>> translate_term thy algbr eqngr permissive some_thm (t', some_abs)
#>> (fn (ty, t) => (v'', ty) `|=> t)
end
| translate_term thy algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
case strip_comb t
of (Const (c, ty), ts) =>
translate_app thy algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
| (t', ts) =>
translate_term thy algbr eqngr permissive some_thm (t', some_abs)
##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_eqn thy algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
fold_map (translate_term thy algbr eqngr permissive some_thm) args
##>> translate_term thy algbr eqngr permissive some_thm (rhs, some_abs)
#>> rpair (some_thm, proper)
and translate_eqns thy algbr eqngr permissive eqns prgrm =
prgrm |> fold_map (translate_eqn thy algbr eqngr permissive) eqns
handle PERMISSIVE () => ([], prgrm)
and translate_const thy algbr eqngr permissive some_thm ((c, ty), some_abs) =
let
val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
andalso Code.is_abstr thy c
then translation_error thy permissive some_thm
"Abstraction violation" ("constant " ^ Code.string_of_const thy c)
else ()
val arg_typs = Sign.const_typargs thy (c, ty);
val sorts = Code_Preproc.sortargs eqngr c;
val function_typs = (fst o Term.strip_type) ty;
in
ensure_const thy algbr eqngr permissive c
##>> fold_map (translate_typ thy algbr eqngr permissive) arg_typs
##>> fold_map (translate_dicts thy algbr eqngr permissive some_thm) (arg_typs ~~ sorts)
##>> fold_map (translate_typ thy algbr eqngr permissive) function_typs
#>> (fn (((c, arg_typs), dss), function_typs) => IConst (c, ((arg_typs, dss), function_typs)))
end
and translate_app_const thy algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
translate_const thy algbr eqngr permissive some_thm (c_ty, some_abs)
##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_case thy algbr eqngr permissive some_thm (num_args, (t_pos, case_pats)) (c_ty, ts) =
let
fun arg_types num_args ty = (fst o chop num_args o fst o strip_type) ty;
val tys = arg_types num_args (snd c_ty);
val ty = nth tys t_pos;
fun mk_constr c t = let val n = Code.args_number thy c
in ((c, arg_types n (fastype_of t) ---> ty), n) end;
val constrs = if null case_pats then []
else map2 mk_constr case_pats (nth_drop t_pos ts);
fun casify naming constrs ty ts =
let
val undefineds = map_filter (lookup_const naming) (Code.undefineds thy);
fun collapse_clause vs_map ts body =
let
in case body
of IConst (c, _) => if member (op =) undefineds c
then []
else [(ts, body)]
| ICase (((IVar (SOME v), _), subclauses), _) =>
if forall (fn (pat', body') => exists_var pat' v
orelse not (exists_var body' v)) subclauses
then case AList.lookup (op =) vs_map v
of SOME i => maps (fn (pat', body') =>
collapse_clause (AList.delete (op =) v vs_map)
(nth_map i (K pat') ts) body') subclauses
| NONE => [(ts, body)]
else [(ts, body)]
| _ => [(ts, body)]
end;
fun mk_clause mk tys t =
let
val (vs, body) = unfold_abs_eta tys t;
val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
val ts = map (IVar o fst) vs;
in map mk (collapse_clause vs_map ts body) end;
val t = nth ts t_pos;
val ts_clause = nth_drop t_pos ts;
val clauses = if null case_pats
then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
else maps (fn ((constr as IConst (_, (_, tys)), n), t) =>
mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
(constrs ~~ ts_clause);
in ((t, ty), clauses) end;
in
translate_const thy algbr eqngr permissive some_thm (c_ty, NONE)
##>> fold_map (fn (constr, n) => translate_const thy algbr eqngr permissive some_thm (constr, NONE)
#>> rpair n) constrs
##>> translate_typ thy algbr eqngr permissive ty
##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
#-> (fn (((t, constrs), ty), ts) =>
`(fn (_, (naming, _)) => ICase (casify naming constrs ty ts, t `$$ ts)))
end
and translate_app_case thy algbr eqngr permissive some_thm (case_scheme as (num_args, _)) ((c, ty), ts) =
if length ts < num_args then
let
val k = length ts;
val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
val ctxt = (fold o fold_aterms) Term.declare_term_frees ts Name.context;
val vs = Name.names ctxt "a" tys;
in
fold_map (translate_typ thy algbr eqngr permissive) tys
##>> translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts @ map Free vs)
#>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
end
else if length ts > num_args then
translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), take num_args ts)
##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
#>> (fn (t, ts) => t `$$ ts)
else
translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts)
and translate_app thy algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
case Code.get_case_scheme thy c
of SOME case_scheme => translate_app_case thy algbr eqngr permissive some_thm case_scheme c_ty_ts
| NONE => translate_app_const thy algbr eqngr permissive some_thm (c_ty_ts, some_abs)
and translate_tyvar_sort thy (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
fold_map (ensure_class thy algbr eqngr permissive) (proj_sort sort)
#>> (fn sort => (unprefix "'" v, sort))
and translate_dicts thy (algbr as (proj_sort, algebra)) eqngr permissive some_thm (ty, sort) =
let
datatype typarg =
Global of (class * string) * typarg list list
| Local of (class * class) list * (string * (int * sort));
fun class_relation (Global ((_, tyco), yss), _) class =
Global ((class, tyco), yss)
| class_relation (Local (classrels, v), sub_class) super_class =
Local ((sub_class, super_class) :: classrels, v);
fun type_constructor (tyco, _) yss class =
Global ((class, tyco), (map o map) fst yss);
fun type_variable (TFree (v, sort)) =
let
val sort' = proj_sort sort;
in map_index (fn (n, class) => (Local ([], (v, (n, sort'))), class)) sort' end;
val typargs = Sorts.of_sort_derivation algebra
{class_relation = K (Sorts.classrel_derivation algebra class_relation),
type_constructor = type_constructor,
type_variable = type_variable} (ty, proj_sort sort)
handle Sorts.CLASS_ERROR e => not_wellsorted thy permissive some_thm ty sort e;
fun mk_dict (Global (inst, yss)) =
ensure_inst thy algbr eqngr permissive inst
##>> (fold_map o fold_map) mk_dict yss
#>> (fn (inst, dss) => DictConst (inst, dss))
| mk_dict (Local (classrels, (v, (n, sort)))) =
fold_map (ensure_classrel thy algbr eqngr permissive) classrels
#>> (fn classrels => DictVar (classrels, (unprefix "'" v, (n, length sort))))
in fold_map mk_dict typargs end;
(* store *)
structure Program = Code_Data
(
type T = naming * program;
val empty = (empty_naming, Graph.empty);
);
fun cache_generation thy (algebra, eqngr) f name =
Program.change_yield thy (fn naming_program => (NONE, naming_program)
|> f thy algebra eqngr name
|-> (fn name => fn (_, naming_program) => (name, naming_program)));
fun transient_generation thy (algebra, eqngr) f name =
(NONE, (empty_naming, Graph.empty))
|> f thy algebra eqngr name
|-> (fn name => fn (_, naming_program) => (name, naming_program));
(* program generation *)
fun consts_program thy permissive cs =
let
fun project_consts cs (naming, program) =
let
val cs_all = Graph.all_succs program cs;
in (cs, (naming, Graph.subgraph (member (op =) cs_all) program)) end;
fun generate_consts thy algebra eqngr =
fold_map (ensure_const thy algebra eqngr permissive);
val invoke_generation = if permissive
then transient_generation else cache_generation
in
invoke_generation thy (Code_Preproc.obtain thy cs []) generate_consts cs
|-> project_consts
end;
(* value evaluation *)
fun ensure_value thy algbr eqngr t =
let
val ty = fastype_of t;
val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
o dest_TFree))) t [];
val stmt_value =
fold_map (translate_tyvar_sort thy algbr eqngr false) vs
##>> translate_typ thy algbr eqngr false ty
##>> translate_term thy algbr eqngr false NONE (Code.subst_signatures thy t, NONE)
#>> (fn ((vs, ty), t) => Fun
(Term.dummy_patternN, (((vs, ty), [(([], t), (NONE, true))]), NONE)));
fun term_value (dep, (naming, program1)) =
let
val Fun (_, ((vs_ty, [(([], t), _)]), _)) =
Graph.get_node program1 Term.dummy_patternN;
val deps = Graph.imm_succs program1 Term.dummy_patternN;
val program2 = Graph.del_nodes [Term.dummy_patternN] program1;
val deps_all = Graph.all_succs program2 deps;
val program3 = Graph.subgraph (member (op =) deps_all) program2;
in (((naming, program3), ((vs_ty, t), deps)), (dep, (naming, program2))) end;
in
ensure_stmt ((K o K) NONE) pair stmt_value Term.dummy_patternN
#> snd
#> term_value
end;
fun base_evaluator thy evaluator algebra eqngr vs t =
let
val (((naming, program), (((vs', ty'), t'), deps)), _) =
cache_generation thy (algebra, eqngr) ensure_value t;
val vs'' = map (fn (v, _) => (v, (the o AList.lookup (op =) vs o prefix "'") v)) vs';
in evaluator naming program ((vs'', (vs', ty')), t') deps end;
fun eval_conv thy = Code_Preproc.eval_conv thy o base_evaluator thy;
fun eval thy postproc = Code_Preproc.eval thy postproc o base_evaluator thy;
(** diagnostic commands **)
fun read_const_exprs thy =
let
fun consts_of thy' = Symtab.fold (fn (c, (_, NONE)) => cons c | _ => I)
((snd o #constants o Consts.dest o #consts o Sign.rep_sg) thy') [];
fun belongs_here thy' c = forall
(fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
fun read_const_expr "*" = ([], consts_of thy)
| read_const_expr s = if String.isSuffix ".*" s
then ([], consts_of_select (Context.this_theory thy (unsuffix ".*" s)))
else ([Code.read_const thy s], []);
in pairself flat o split_list o map read_const_expr end;
fun code_depgr thy consts =
let
val (_, eqngr) = Code_Preproc.obtain thy consts [];
val all_consts = Graph.all_succs eqngr consts;
in Graph.subgraph (member (op =) all_consts) eqngr end;
fun code_thms thy = Pretty.writeln o Code_Preproc.pretty thy o code_depgr thy;
fun code_deps thy consts =
let
val eqngr = code_depgr thy consts;
val constss = Graph.strong_conn eqngr;
val mapping = Symtab.empty |> fold (fn consts => fold (fn const =>
Symtab.update (const, consts)) consts) constss;
fun succs consts = consts
|> maps (Graph.imm_succs eqngr)
|> subtract (op =) consts
|> map (the o Symtab.lookup mapping)
|> distinct (op =);
val conn = [] |> fold (fn consts => cons (consts, succs consts)) constss;
fun namify consts = map (Code.string_of_const thy) consts
|> commas;
val prgr = map (fn (consts, constss) =>
{ name = namify consts, ID = namify consts, dir = "", unfold = true,
path = "", parents = map namify constss }) conn;
in Present.display_graph prgr end;
local
fun code_thms_cmd thy = code_thms thy o op @ o read_const_exprs thy;
fun code_deps_cmd thy = code_deps thy o op @ o read_const_exprs thy;
in
val _ =
Outer_Syntax.improper_command "code_thms" "print system of code equations for code" Keyword.diag
(Scan.repeat1 Parse.term_group
>> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of)));
val _ =
Outer_Syntax.improper_command "code_deps" "visualize dependencies of code equations for code"
Keyword.diag
(Scan.repeat1 Parse.term_group
>> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of)));
end;
end; (*struct*)
structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;