(* Title: HOL/IntDiv.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
The division operators div, mod and the divides relation "dvd"
Here is the division algorithm in ML:
fun posDivAlg (a,b) =
if a<b then (0,a)
else let val (q,r) = posDivAlg(a, 2*b)
in if 0<=r-b then (2*q+1, r-b) else (2*q, r)
end;
fun negDivAlg (a,b) =
if 0<=a+b then (~1,a+b)
else let val (q,r) = negDivAlg(a, 2*b)
in if 0<=r-b then (2*q+1, r-b) else (2*q, r)
end;
fun negateSnd (q,r:int) = (q,~r);
fun divAlg (a,b) = if 0<=a then
if b>0 then posDivAlg (a,b)
else if a=0 then (0,0)
else negateSnd (negDivAlg (~a,~b))
else
if 0<b then negDivAlg (a,b)
else negateSnd (posDivAlg (~a,~b));
*)
Addsimps [zless_nat_conj];
(*** Uniqueness and monotonicity of quotients and remainders ***)
Goal "[| b*q' + r' <= b*q + r; #0 <= r'; #0 < b; r < b |] \
\ ==> q' <= (q::int)";
by (subgoal_tac "r' + b * (q'-q) <= r" 1);
by (simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 2);
by (subgoal_tac "#0 < b * (#1 + q - q')" 1);
by (etac order_le_less_trans 2);
by (full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2,
zadd_zmult_distrib2]) 2);
by (subgoal_tac "b * q' < b * (#1 + q)" 1);
by (full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2,
zadd_zmult_distrib2]) 2);
by (asm_full_simp_tac (simpset() addsimps [zmult_zless_cancel1]) 1);
qed "unique_quotient_lemma";
Goal "[| b*q' + r' <= b*q + r; r <= #0; b < #0; b < r' |] \
\ ==> q <= (q'::int)";
by (res_inst_tac [("b", "-b"), ("r", "-r'"), ("r'", "-r")]
unique_quotient_lemma 1);
by (auto_tac (claset(),
simpset() addsimps [zmult_zminus, zmult_zminus_right]));
qed "unique_quotient_lemma_neg";
Goal "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b ~= #0 |] \
\ ==> q = q'";
by (asm_full_simp_tac
(simpset() addsimps split_ifs@
[quorem_def, linorder_neq_iff]) 1);
by Safe_tac;
by (ALLGOALS Asm_full_simp_tac);
by (REPEAT
(blast_tac (claset() addIs [order_antisym]
addDs [order_eq_refl RS unique_quotient_lemma,
order_eq_refl RS unique_quotient_lemma_neg,
sym]) 1));
qed "unique_quotient";
Goal "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b ~= #0 |] \
\ ==> r = r'";
by (subgoal_tac "q = q'" 1);
by (blast_tac (claset() addIs [unique_quotient]) 2);
by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
qed "unique_remainder";
(*** Correctness of posDivAlg, the division algorithm for a>=0 and b>0 ***)
Goal "adjust a b (q,r) = (let diff = r-b in \
\ if #0 <= diff then (#2*q + #1, diff) \
\ else (#2*q, r))";
by (simp_tac (simpset() addsimps [Let_def,adjust_def]) 1);
qed "adjust_eq";
Addsimps [adjust_eq];
(*Proving posDivAlg's termination condition*)
val [tc] = posDivAlg.tcs;
goalw_cterm [] (cterm_of (sign_of (the_context ())) (HOLogic.mk_Trueprop tc));
by Auto_tac;
val lemma = result();
(* removing the termination condition from the generated theorems *)
bind_thm ("posDivAlg_raw_eqn", lemma RS hd posDivAlg.simps);
(**use with simproc to avoid re-proving the premise*)
Goal "#0 < b ==> \
\ posDivAlg (a,b) = \
\ (if a<b then (#0,a) else adjust a b (posDivAlg(a, #2*b)))";
by (rtac (posDivAlg_raw_eqn RS trans) 1);
by (Asm_simp_tac 1);
qed "posDivAlg_eqn";
bind_thm ("posDivAlg_induct", lemma RS posDivAlg.induct);
(*Correctness of posDivAlg: it computes quotients correctly*)
Goal "#0 <= a --> #0 < b --> quorem ((a, b), posDivAlg (a, b))";
by (induct_thm_tac posDivAlg_induct "a b" 1);
by Auto_tac;
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [quorem_def])));
(*base case: a<b*)
by (asm_full_simp_tac (simpset() addsimps [posDivAlg_eqn]) 1);
(*main argument*)
by (stac posDivAlg_eqn 1);
by (ALLGOALS Asm_simp_tac);
by (etac splitE 1);
by (auto_tac (claset(), simpset() addsimps [zadd_zmult_distrib2, Let_def]));
qed_spec_mp "posDivAlg_correct";
(*** Correctness of negDivAlg, the division algorithm for a<0 and b>0 ***)
(*Proving negDivAlg's termination condition*)
val [tc] = negDivAlg.tcs;
goalw_cterm [] (cterm_of (sign_of (the_context ())) (HOLogic.mk_Trueprop tc));
by Auto_tac;
val lemma = result();
(* removing the termination condition from the generated theorems *)
bind_thm ("negDivAlg_raw_eqn", lemma RS hd negDivAlg.simps);
(**use with simproc to avoid re-proving the premise*)
Goal "#0 < b ==> \
\ negDivAlg (a,b) = \
\ (if #0<=a+b then (#-1,a+b) else adjust a b (negDivAlg(a, #2*b)))";
by (rtac (negDivAlg_raw_eqn RS trans) 1);
by (Asm_simp_tac 1);
qed "negDivAlg_eqn";
bind_thm ("negDivAlg_induct", lemma RS negDivAlg.induct);
(*Correctness of negDivAlg: it computes quotients correctly
It doesn't work if a=0 because the 0/b=0 rather than -1*)
Goal "a < #0 --> #0 < b --> quorem ((a, b), negDivAlg (a, b))";
by (induct_thm_tac negDivAlg_induct "a b" 1);
by Auto_tac;
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [quorem_def])));
(*base case: 0<=a+b*)
by (asm_full_simp_tac (simpset() addsimps [negDivAlg_eqn]) 1);
(*main argument*)
by (stac negDivAlg_eqn 1);
by (ALLGOALS Asm_simp_tac);
by (etac splitE 1);
by (auto_tac (claset(), simpset() addsimps [zadd_zmult_distrib2, Let_def]));
qed_spec_mp "negDivAlg_correct";
(*** Existence shown by proving the division algorithm to be correct ***)
(*the case a=0*)
Goal "b ~= #0 ==> quorem ((#0,b), (#0,#0))";
by (auto_tac (claset(),
simpset() addsimps [quorem_def, linorder_neq_iff]));
qed "quorem_0";
Goal "posDivAlg (#0, b) = (#0, #0)";
by (stac posDivAlg_raw_eqn 1);
by Auto_tac;
qed "posDivAlg_0";
Addsimps [posDivAlg_0];
Goal "negDivAlg (#-1, b) = (#-1, b-#1)";
by (stac negDivAlg_raw_eqn 1);
by Auto_tac;
qed "negDivAlg_minus1";
Addsimps [negDivAlg_minus1];
Goalw [negateSnd_def] "negateSnd(q,r) = (q,-r)";
by Auto_tac;
qed "negateSnd_eq";
Addsimps [negateSnd_eq];
Goal "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)";
by (auto_tac (claset(), simpset() addsimps split_ifs@[quorem_def]));
qed "quorem_neg";
Goal "b ~= #0 ==> quorem ((a,b), divAlg(a,b))";
by (auto_tac (claset(),
simpset() addsimps [quorem_0, divAlg_def]));
by (REPEAT_FIRST (resolve_tac [quorem_neg, posDivAlg_correct,
negDivAlg_correct]));
by (auto_tac (claset(),
simpset() addsimps [quorem_def, linorder_neq_iff]));
qed "divAlg_correct";
(** Arbitrary definitions for division by zero. Useful to simplify
certain equations **)
Goal "a div (#0::int) = #0";
by (simp_tac (simpset() addsimps [div_def, divAlg_def, posDivAlg_raw_eqn]) 1);
qed "DIVISION_BY_ZERO_ZDIV"; (*NOT for adding to default simpset*)
Goal "a mod (#0::int) = a";
by (simp_tac (simpset() addsimps [mod_def, divAlg_def, posDivAlg_raw_eqn]) 1);
qed "DIVISION_BY_ZERO_ZMOD"; (*NOT for adding to default simpset*)
fun zdiv_undefined_case_tac s i =
case_tac s i THEN
asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_ZDIV,
DIVISION_BY_ZERO_ZMOD]) i;
(** Basic laws about division and remainder **)
Goal "(a::int) = b * (a div b) + (a mod b)";
by (zdiv_undefined_case_tac "b = #0" 1);
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
by (auto_tac (claset(),
simpset() addsimps [quorem_def, div_def, mod_def]));
qed "zmod_zdiv_equality";
Goal "(#0::int) < b ==> #0 <= a mod b & a mod b < b";
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
by (auto_tac (claset(),
simpset() addsimps [quorem_def, mod_def]));
bind_thm ("pos_mod_sign", result() RS conjunct1);
bind_thm ("pos_mod_bound", result() RS conjunct2);
Goal "b < (#0::int) ==> a mod b <= #0 & b < a mod b";
by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
by (auto_tac (claset(),
simpset() addsimps [quorem_def, div_def, mod_def]));
bind_thm ("neg_mod_sign", result() RS conjunct1);
bind_thm ("neg_mod_bound", result() RS conjunct2);
(** proving general properties of div and mod **)
Goal "b ~= #0 ==> quorem ((a, b), (a div b, a mod b))";
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
by (auto_tac
(claset(),
simpset() addsimps [quorem_def, linorder_neq_iff,
pos_mod_sign,pos_mod_bound,
neg_mod_sign, neg_mod_bound]));
qed "quorem_div_mod";
Goal "[| quorem((a,b),(q,r)); b ~= #0 |] ==> a div b = q";
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_quotient]) 1);
qed "quorem_div";
Goal "[| quorem((a,b),(q,r)); b ~= #0 |] ==> a mod b = r";
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_remainder]) 1);
qed "quorem_mod";
Goal "[| (#0::int) <= a; a < b |] ==> a div b = #0";
by (rtac quorem_div 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "div_pos_pos_trivial";
Goal "[| a <= (#0::int); b < a |] ==> a div b = #0";
by (rtac quorem_div 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "div_neg_neg_trivial";
Goal "[| (#0::int) < a; a+b <= #0 |] ==> a div b = #-1";
by (rtac quorem_div 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "div_pos_neg_trivial";
(*There is no div_neg_pos_trivial because #0 div b = #0 would supersede it*)
Goal "[| (#0::int) <= a; a < b |] ==> a mod b = a";
by (res_inst_tac [("q","#0")] quorem_mod 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "mod_pos_pos_trivial";
Goal "[| a <= (#0::int); b < a |] ==> a mod b = a";
by (res_inst_tac [("q","#0")] quorem_mod 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "mod_neg_neg_trivial";
Goal "[| (#0::int) < a; a+b <= #0 |] ==> a mod b = a+b";
by (res_inst_tac [("q","#-1")] quorem_mod 1);
by (auto_tac (claset(), simpset() addsimps [quorem_def]));
qed "mod_pos_neg_trivial";
(*There is no mod_neg_pos_trivial...*)
(*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*)
Goal "(-a) div (-b) = a div (b::int)";
by (zdiv_undefined_case_tac "b = #0" 1);
by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg))
RS quorem_div) 1);
by Auto_tac;
qed "zdiv_zminus_zminus";
Addsimps [zdiv_zminus_zminus];
(*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*)
Goal "(-a) mod (-b) = - (a mod (b::int))";
by (zdiv_undefined_case_tac "b = #0" 1);
by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg))
RS quorem_mod) 1);
by Auto_tac;
qed "zmod_zminus_zminus";
Addsimps [zmod_zminus_zminus];
(*** div, mod and unary minus ***)
Goal "quorem((a,b),(q,r)) \
\ ==> quorem ((-a,b), (if r=#0 then -q else -q-#1), \
\ (if r=#0 then #0 else b-r))";
by (auto_tac
(claset(),
simpset() addsimps split_ifs@
[quorem_def, linorder_neq_iff,
zdiff_zmult_distrib2]));
val lemma = result();
Goal "b ~= (#0::int) \
\ ==> (-a) div b = \
\ (if a mod b = #0 then - (a div b) else - (a div b) - #1)";
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
qed "zdiv_zminus1_eq_if";
Goal "(-a::int) mod b = (if a mod b = #0 then #0 else b - (a mod b))";
by (zdiv_undefined_case_tac "b = #0" 1);
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
qed "zmod_zminus1_eq_if";
Goal "a div (-b) = (-a::int) div b";
by (cut_inst_tac [("a","-a")] zdiv_zminus_zminus 1);
by Auto_tac;
qed "zdiv_zminus2";
Goal "a mod (-b) = - ((-a::int) mod b)";
by (cut_inst_tac [("a","-a"),("b","b")] zmod_zminus_zminus 1);
by Auto_tac;
qed "zmod_zminus2";
Goal "b ~= (#0::int) \
\ ==> a div (-b) = \
\ (if a mod b = #0 then - (a div b) else - (a div b) - #1)";
by (asm_simp_tac (simpset() addsimps [zdiv_zminus1_eq_if, zdiv_zminus2]) 1);
qed "zdiv_zminus2_eq_if";
Goal "a mod (-b::int) = (if a mod b = #0 then #0 else (a mod b) - b)";
by (asm_simp_tac (simpset() addsimps [zmod_zminus1_eq_if, zmod_zminus2]) 1);
qed "zmod_zminus2_eq_if";
(*** division of a number by itself ***)
Goal "[| (#0::int) < a; a = r + a*q; r < a |] ==> #1 <= q";
by (subgoal_tac "#0 < a*q" 1);
by (arith_tac 2);
by (asm_full_simp_tac (simpset() addsimps [int_0_less_mult_iff]) 1);
val lemma1 = result();
Goal "[| (#0::int) < a; a = r + a*q; #0 <= r |] ==> q <= #1";
by (subgoal_tac "#0 <= a*(#1-q)" 1);
by (asm_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 2);
by (asm_full_simp_tac (simpset() addsimps [int_0_le_mult_iff]) 1);
val lemma2 = result();
Goal "[| quorem((a,a),(q,r)); a ~= (#0::int) |] ==> q = #1";
by (asm_full_simp_tac
(simpset() addsimps split_ifs@[quorem_def, linorder_neq_iff]) 1);
by (rtac order_antisym 1);
by Safe_tac;
by Auto_tac;
by (res_inst_tac [("a", "-a"),("r", "-r")] lemma1 3);
by (res_inst_tac [("a", "-a"),("r", "-r")] lemma2 1);
by (REPEAT (force_tac (claset() addIs [lemma1,lemma2],
simpset() addsimps [zadd_commute, zmult_zminus]) 1));
qed "self_quotient";
Goal "[| quorem((a,a),(q,r)); a ~= (#0::int) |] ==> r = #0";
by (ftac self_quotient 1);
by (assume_tac 1);
by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
qed "self_remainder";
Goal "a ~= #0 ==> a div a = (#1::int)";
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_quotient]) 1);
qed "zdiv_self";
Addsimps [zdiv_self];
(*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
Goal "a mod a = (#0::int)";
by (zdiv_undefined_case_tac "a = #0" 1);
by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_remainder]) 1);
qed "zmod_self";
Addsimps [zmod_self];
(*** Computation of division and remainder ***)
Goal "(#0::int) div b = #0";
by (simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "zdiv_zero";
Goal "(#0::int) < b ==> #-1 div b = #-1";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "div_eq_minus1";
Goal "(#0::int) mod b = #0";
by (simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "zmod_zero";
Addsimps [zdiv_zero, zmod_zero];
Goal "(#0::int) < b ==> #-1 div b = #-1";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "zdiv_minus1";
Goal "(#0::int) < b ==> #-1 mod b = b-#1";
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "zmod_minus1";
(** a positive, b positive **)
Goal "[| #0 < a; #0 <= b |] ==> a div b = fst (posDivAlg(a,b))";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "div_pos_pos";
Goal "[| #0 < a; #0 <= b |] ==> a mod b = snd (posDivAlg(a,b))";
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "mod_pos_pos";
(** a negative, b positive **)
Goal "[| a < #0; #0 < b |] ==> a div b = fst (negDivAlg(a,b))";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "div_neg_pos";
Goal "[| a < #0; #0 < b |] ==> a mod b = snd (negDivAlg(a,b))";
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "mod_neg_pos";
(** a positive, b negative **)
Goal "[| #0 < a; b < #0 |] ==> a div b = fst (negateSnd(negDivAlg(-a,-b)))";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "div_pos_neg";
Goal "[| #0 < a; b < #0 |] ==> a mod b = snd (negateSnd(negDivAlg(-a,-b)))";
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "mod_pos_neg";
(** a negative, b negative **)
Goal "[| a < #0; b <= #0 |] ==> a div b = fst (negateSnd(posDivAlg(-a,-b)))";
by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
qed "div_neg_neg";
Goal "[| a < #0; b <= #0 |] ==> a mod b = snd (negateSnd(posDivAlg(-a,-b)))";
by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
qed "mod_neg_neg";
Addsimps (map (read_instantiate_sg (sign_of (the_context ()))
[("a", "number_of ?v"), ("b", "number_of ?w")])
[div_pos_pos, div_neg_pos, div_pos_neg, div_neg_neg,
mod_pos_pos, mod_neg_pos, mod_pos_neg, mod_neg_neg,
posDivAlg_eqn, negDivAlg_eqn]);
(** Special-case simplification **)
Goal "a mod (#1::int) = #0";
by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_sign 1);
by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_bound 2);
by Auto_tac;
qed "zmod_1";
Addsimps [zmod_1];
Goal "a div (#1::int) = a";
by (cut_inst_tac [("a","a"),("b","#1")] zmod_zdiv_equality 1);
by Auto_tac;
qed "zdiv_1";
Addsimps [zdiv_1];
Goal "a mod (#-1::int) = #0";
by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_sign 1);
by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_bound 2);
by Auto_tac;
qed "zmod_minus1_right";
Addsimps [zmod_minus1_right];
Goal "a div (#-1::int) = -a";
by (cut_inst_tac [("a","a"),("b","#-1")] zmod_zdiv_equality 1);
by Auto_tac;
qed "zdiv_minus1_right";
Addsimps [zdiv_minus1_right];
(*** Monotonicity in the first argument (divisor) ***)
Goal "[| a <= a'; #0 < (b::int) |] ==> a div b <= a' div b";
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
by (rtac unique_quotient_lemma 1);
by (etac subst 1);
by (etac subst 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
qed "zdiv_mono1";
Goal "[| a <= a'; (b::int) < #0 |] ==> a' div b <= a div b";
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
by (rtac unique_quotient_lemma_neg 1);
by (etac subst 1);
by (etac subst 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [neg_mod_sign,neg_mod_bound])));
qed "zdiv_mono1_neg";
(*** Monotonicity in the second argument (dividend) ***)
Goal "[| b*q + r = b'*q' + r'; #0 <= b'*q' + r'; \
\ r' < b'; #0 <= r; #0 < b'; b' <= b |] \
\ ==> q <= (q'::int)";
by (subgoal_tac "#0 <= q'" 1);
by (subgoal_tac "#0 < b'*(q' + #1)" 2);
by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 3);
by (asm_full_simp_tac (simpset() addsimps [int_0_less_mult_iff]) 2);
by (subgoal_tac "b*q < b*(q' + #1)" 1);
by (asm_full_simp_tac (simpset() addsimps [zmult_zless_cancel1]) 1);
by (subgoal_tac "b*q = r' - r + b'*q'" 1);
by (Simp_tac 2);
by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
by (stac zadd_commute 1 THEN rtac zadd_zless_mono 1 THEN arith_tac 1);
by (rtac zmult_zle_mono1 1);
by Auto_tac;
qed "zdiv_mono2_lemma";
Goal "[| (#0::int) <= a; #0 < b'; b' <= b |] \
\ ==> a div b <= a div b'";
by (subgoal_tac "b ~= #0" 1);
by (arith_tac 2);
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
by (rtac zdiv_mono2_lemma 1);
by (etac subst 1);
by (etac subst 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
qed "zdiv_mono2";
Goal "[| b*q + r = b'*q' + r'; b'*q' + r' < #0; \
\ r < b; #0 <= r'; #0 < b'; b' <= b |] \
\ ==> q' <= (q::int)";
by (subgoal_tac "q' < #0" 1);
by (subgoal_tac "b'*q' < #0" 2);
by (arith_tac 3);
by (asm_full_simp_tac (simpset() addsimps [zmult_less_0_iff]) 2);
by (subgoal_tac "b*q' < b*(q + #1)" 1);
by (asm_full_simp_tac (simpset() addsimps [zmult_zless_cancel1]) 1);
by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
by (subgoal_tac "b*q' <= b'*q'" 1);
by (asm_simp_tac (simpset() addsimps [zmult_zle_mono1_neg]) 2);
by (subgoal_tac "b'*q' < b + b*q" 1);
by (Asm_simp_tac 2);
by (arith_tac 1);
qed "zdiv_mono2_neg_lemma";
Goal "[| a < (#0::int); #0 < b'; b' <= b |] \
\ ==> a div b' <= a div b";
by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
by (rtac zdiv_mono2_neg_lemma 1);
by (etac subst 1);
by (etac subst 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
qed "zdiv_mono2_neg";
(*** More algebraic laws for div and mod ***)
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
Goal "[| quorem((b,c),(q,r)); c ~= #0 |] \
\ ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))";
by (auto_tac
(claset(),
simpset() addsimps split_ifs@
[quorem_def, linorder_neq_iff,
zadd_zmult_distrib2,
pos_mod_sign,pos_mod_bound,
neg_mod_sign, neg_mod_bound]));
by (ALLGOALS(rtac zmod_zdiv_equality));
val lemma = result();
Goal "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)";
by (zdiv_undefined_case_tac "c = #0" 1);
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
qed "zdiv_zmult1_eq";
Goal "(a*b) mod c = a*(b mod c) mod (c::int)";
by (zdiv_undefined_case_tac "c = #0" 1);
by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
qed "zmod_zmult1_eq";
Goal "(a*b) mod (c::int) = ((a mod c) * b) mod c";
by (rtac trans 1);
by (res_inst_tac [("s","b*a mod c")] trans 1);
by (rtac zmod_zmult1_eq 2);
by (ALLGOALS (simp_tac (simpset() addsimps [zmult_commute])));
qed "zmod_zmult1_eq'";
Goal "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c";
by (rtac (zmod_zmult1_eq' RS trans) 1);
by (rtac zmod_zmult1_eq 1);
qed "zmod_zmult_distrib";
Goal "b ~= (#0::int) ==> (a*b) div b = a";
by (asm_simp_tac (simpset() addsimps [zdiv_zmult1_eq]) 1);
qed "zdiv_zmult_self1";
Goal "b ~= (#0::int) ==> (b*a) div b = a";
by (stac zmult_commute 1 THEN etac zdiv_zmult_self1 1);
qed "zdiv_zmult_self2";
Addsimps [zdiv_zmult_self1, zdiv_zmult_self2];
Goal "(a*b) mod b = (#0::int)";
by (simp_tac (simpset() addsimps [zmod_zmult1_eq]) 1);
qed "zmod_zmult_self1";
Goal "(b*a) mod b = (#0::int)";
by (simp_tac (simpset() addsimps [zmult_commute, zmod_zmult1_eq]) 1);
qed "zmod_zmult_self2";
Addsimps [zmod_zmult_self1, zmod_zmult_self2];
Goal "(m mod d = #0) = (EX q::int. m = d*q)";
by (cut_inst_tac [("a","m"),("b","d")] zmod_zdiv_equality 1);
by Auto_tac;
qed "zmod_eq_0_iff";
AddSDs [zmod_eq_0_iff RS iffD1];
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
Goal "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c ~= #0 |] \
\ ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))";
by (auto_tac
(claset(),
simpset() addsimps split_ifs@
[quorem_def, linorder_neq_iff,
zadd_zmult_distrib2,
pos_mod_sign,pos_mod_bound,
neg_mod_sign, neg_mod_bound]));
by (ALLGOALS(rtac zmod_zdiv_equality));
val lemma = result();
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
Goal "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)";
by (zdiv_undefined_case_tac "c = #0" 1);
by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
MRS lemma RS quorem_div]) 1);
qed "zdiv_zadd1_eq";
Goal "(a+b) mod (c::int) = (a mod c + b mod c) mod c";
by (zdiv_undefined_case_tac "c = #0" 1);
by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
MRS lemma RS quorem_mod]) 1);
qed "zmod_zadd1_eq";
Goal "(a mod b) div b = (#0::int)";
by (zdiv_undefined_case_tac "b = #0" 1);
by (auto_tac (claset(),
simpset() addsimps [linorder_neq_iff,
pos_mod_sign, pos_mod_bound, div_pos_pos_trivial,
neg_mod_sign, neg_mod_bound, div_neg_neg_trivial]));
qed "mod_div_trivial";
Addsimps [mod_div_trivial];
Goal "(a mod b) mod b = a mod (b::int)";
by (zdiv_undefined_case_tac "b = #0" 1);
by (auto_tac (claset(),
simpset() addsimps [linorder_neq_iff,
pos_mod_sign, pos_mod_bound, mod_pos_pos_trivial,
neg_mod_sign, neg_mod_bound, mod_neg_neg_trivial]));
qed "mod_mod_trivial";
Addsimps [mod_mod_trivial];
Goal "(a+b) mod (c::int) = ((a mod c) + b) mod c";
by (rtac (trans RS sym) 1);
by (rtac zmod_zadd1_eq 1);
by (Simp_tac 1);
by (rtac (zmod_zadd1_eq RS sym) 1);
qed "zmod_zadd_left_eq";
Goal "(a+b) mod (c::int) = (a + (b mod c)) mod c";
by (rtac (trans RS sym) 1);
by (rtac zmod_zadd1_eq 1);
by (Simp_tac 1);
by (rtac (zmod_zadd1_eq RS sym) 1);
qed "zmod_zadd_right_eq";
Goal "a ~= (#0::int) ==> (a+b) div a = b div a + #1";
by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
qed "zdiv_zadd_self1";
Goal "a ~= (#0::int) ==> (b+a) div a = b div a + #1";
by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
qed "zdiv_zadd_self2";
Addsimps [zdiv_zadd_self1, zdiv_zadd_self2];
Goal "(a+b) mod a = b mod (a::int)";
by (zdiv_undefined_case_tac "a = #0" 1);
by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
qed "zmod_zadd_self1";
Goal "(b+a) mod a = b mod (a::int)";
by (zdiv_undefined_case_tac "a = #0" 1);
by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
qed "zmod_zadd_self2";
Addsimps [zmod_zadd_self1, zmod_zadd_self2];
(*** proving a div (b*c) = (a div b) div c ***)
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
to cause particular problems.*)
(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
Goal "[| (#0::int) < c; b < r; r <= #0 |] ==> b*c < b*(q mod c) + r";
by (subgoal_tac "b * (c - q mod c) < r * #1" 1);
by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
by (rtac order_le_less_trans 1);
by (etac zmult_zless_mono1 2);
by (rtac zmult_zle_mono2_neg 1);
by (auto_tac
(claset(),
simpset() addsimps zcompare_rls@
[zadd_commute, add1_zle_eq, pos_mod_bound]));
val lemma1 = result();
Goal "[| (#0::int) < c; b < r; r <= #0 |] ==> b * (q mod c) + r <= #0";
by (subgoal_tac "b * (q mod c) <= #0" 1);
by (arith_tac 1);
by (asm_simp_tac (simpset() addsimps [zmult_le_0_iff, pos_mod_sign]) 1);
val lemma2 = result();
Goal "[| (#0::int) < c; #0 <= r; r < b |] ==> #0 <= b * (q mod c) + r";
by (subgoal_tac "#0 <= b * (q mod c)" 1);
by (arith_tac 1);
by (asm_simp_tac (simpset() addsimps [int_0_le_mult_iff, pos_mod_sign]) 1);
val lemma3 = result();
Goal "[| (#0::int) < c; #0 <= r; r < b |] ==> b * (q mod c) + r < b * c";
by (subgoal_tac "r * #1 < b * (c - q mod c)" 1);
by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
by (rtac order_less_le_trans 1);
by (etac zmult_zless_mono1 1);
by (rtac zmult_zle_mono2 2);
by (auto_tac
(claset(),
simpset() addsimps zcompare_rls@
[zadd_commute, add1_zle_eq, pos_mod_bound]));
val lemma4 = result();
Goal "[| quorem ((a,b), (q,r)); b ~= #0; #0 < c |] \
\ ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))";
by (auto_tac
(claset(),
simpset() addsimps zmult_ac@
[zmod_zdiv_equality, quorem_def, linorder_neq_iff,
int_0_less_mult_iff,
zadd_zmult_distrib2 RS sym,
lemma1, lemma2, lemma3, lemma4]));
val lemma = result();
Goal "(#0::int) < c ==> a div (b*c) = (a div b) div c";
by (zdiv_undefined_case_tac "b = #0" 1);
by (force_tac (claset(),
simpset() addsimps [quorem_div_mod RS lemma RS quorem_div,
zmult_eq_0_iff]) 1);
qed "zdiv_zmult2_eq";
Goal "(#0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b";
by (zdiv_undefined_case_tac "b = #0" 1);
by (force_tac (claset(),
simpset() addsimps [quorem_div_mod RS lemma RS quorem_mod,
zmult_eq_0_iff]) 1);
qed "zmod_zmult2_eq";
(*** Cancellation of common factors in "div" ***)
Goal "[| (#0::int) < b; c ~= #0 |] ==> (c*a) div (c*b) = a div b";
by (stac zdiv_zmult2_eq 1);
by Auto_tac;
val lemma1 = result();
Goal "[| b < (#0::int); c ~= #0 |] ==> (c*a) div (c*b) = a div b";
by (subgoal_tac "(c * (-a)) div (c * (-b)) = (-a) div (-b)" 1);
by (rtac lemma1 2);
by Auto_tac;
val lemma2 = result();
Goal "c ~= (#0::int) ==> (c*a) div (c*b) = a div b";
by (zdiv_undefined_case_tac "b = #0" 1);
by (auto_tac
(claset(),
simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff,
lemma1, lemma2]));
qed "zdiv_zmult_zmult1";
Goal "c ~= (#0::int) ==> (a*c) div (b*c) = a div b";
by (dtac zdiv_zmult_zmult1 1);
by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
qed "zdiv_zmult_zmult2";
(*** Distribution of factors over "mod" ***)
Goal "[| (#0::int) < b; c ~= #0 |] ==> (c*a) mod (c*b) = c * (a mod b)";
by (stac zmod_zmult2_eq 1);
by Auto_tac;
val lemma1 = result();
Goal "[| b < (#0::int); c ~= #0 |] ==> (c*a) mod (c*b) = c * (a mod b)";
by (subgoal_tac "(c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))" 1);
by (rtac lemma1 2);
by Auto_tac;
val lemma2 = result();
Goal "(c*a) mod (c*b) = (c::int) * (a mod b)";
by (zdiv_undefined_case_tac "b = #0" 1);
by (zdiv_undefined_case_tac "c = #0" 1);
by (auto_tac
(claset(),
simpset() addsimps [read_instantiate [("x", "b")] linorder_neq_iff,
lemma1, lemma2]));
qed "zmod_zmult_zmult1";
Goal "(a*c) mod (b*c) = (a mod b) * (c::int)";
by (cut_inst_tac [("c","c")] zmod_zmult_zmult1 1);
by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
qed "zmod_zmult_zmult2";
(*** Speeding up the division algorithm with shifting ***)
(** computing "div" by shifting **)
Goal "(#0::int) <= a ==> (#1 + #2*b) div (#2*a) = b div a";
by (zdiv_undefined_case_tac "a = #0" 1);
by (subgoal_tac "#1 <= a" 1);
by (arith_tac 2);
by (subgoal_tac "#1 < a * #2" 1);
by (arith_tac 2);
by (subgoal_tac "#2*(#1 + b mod a) <= #2*a" 1);
by (rtac zmult_zle_mono2 2);
by (auto_tac (claset(),
simpset() addsimps [zadd_commute, zmult_commute,
add1_zle_eq, pos_mod_bound]));
by (stac zdiv_zadd1_eq 1);
by (asm_simp_tac (simpset() addsimps [zdiv_zmult_zmult2, zmod_zmult_zmult2,
div_pos_pos_trivial]) 1);
by (stac div_pos_pos_trivial 1);
by (asm_simp_tac (simpset()
addsimps [mod_pos_pos_trivial,
pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
by (auto_tac (claset(),
simpset() addsimps [mod_pos_pos_trivial]));
by (subgoal_tac "#0 <= b mod a" 1);
by (asm_simp_tac (simpset() addsimps [pos_mod_sign]) 2);
by (arith_tac 1);
qed "pos_zdiv_mult_2";
Goal "a <= (#0::int) ==> (#1 + #2*b) div (#2*a) = (b+#1) div a";
by (subgoal_tac "(#1 + #2*(-b-#1)) div (#2 * (-a)) = (-b-#1) div (-a)" 1);
by (rtac pos_zdiv_mult_2 2);
by (auto_tac (claset(),
simpset() addsimps [zmult_zminus_right]));
by (subgoal_tac "(#-1 - (#2 * b)) = - (#1 + (#2 * b))" 1);
by (Simp_tac 2);
by (asm_full_simp_tac (HOL_ss
addsimps [zdiv_zminus_zminus, zdiff_def,
zminus_zadd_distrib RS sym]) 1);
qed "neg_zdiv_mult_2";
(*Not clear why this must be proved separately; probably number_of causes
simplification problems*)
Goal "~ #0 <= x ==> x <= (#0::int)";
by Auto_tac;
val lemma = result();
Goal "number_of (v BIT b) div number_of (w BIT False) = \
\ (if ~b | (#0::int) <= number_of w \
\ then number_of v div (number_of w) \
\ else (number_of v + (#1::int)) div (number_of w))";
by (simp_tac (simpset_of Int.thy addsimps [zadd_assoc, number_of_BIT]) 1);
by (asm_simp_tac (simpset()
delsimps [number_of_reorient]@bin_arith_extra_simps@bin_rel_simps
addsimps [zdiv_zmult_zmult1, pos_zdiv_mult_2, lemma,
neg_zdiv_mult_2]) 1);
qed "zdiv_number_of_BIT";
Addsimps [zdiv_number_of_BIT];
(** computing "mod" by shifting (proofs resemble those for "div") **)
Goal "(#0::int) <= a ==> (#1 + #2*b) mod (#2*a) = #1 + #2 * (b mod a)";
by (zdiv_undefined_case_tac "a = #0" 1);
by (subgoal_tac "#1 <= a" 1);
by (arith_tac 2);
by (subgoal_tac "#1 < a * #2" 1);
by (arith_tac 2);
by (subgoal_tac "#2*(#1 + b mod a) <= #2*a" 1);
by (rtac zmult_zle_mono2 2);
by (auto_tac (claset(),
simpset() addsimps [zadd_commute, zmult_commute,
add1_zle_eq, pos_mod_bound]));
by (stac zmod_zadd1_eq 1);
by (asm_simp_tac (simpset() addsimps [zmod_zmult_zmult2,
mod_pos_pos_trivial]) 1);
by (rtac mod_pos_pos_trivial 1);
by (asm_simp_tac (simpset()
addsimps [mod_pos_pos_trivial,
pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
by (auto_tac (claset(),
simpset() addsimps [mod_pos_pos_trivial]));
by (subgoal_tac "#0 <= b mod a" 1);
by (asm_simp_tac (simpset() addsimps [pos_mod_sign]) 2);
by (arith_tac 1);
qed "pos_zmod_mult_2";
Goal "a <= (#0::int) ==> (#1 + #2*b) mod (#2*a) = #2 * ((b+#1) mod a) - #1";
by (subgoal_tac
"(#1 + #2*(-b-#1)) mod (#2*(-a)) = #1 + #2*((-b-#1) mod (-a))" 1);
by (rtac pos_zmod_mult_2 2);
by (auto_tac (claset(),
simpset() addsimps [zmult_zminus_right]));
by (subgoal_tac "(#-1 - (#2 * b)) = - (#1 + (#2 * b))" 1);
by (Simp_tac 2);
by (asm_full_simp_tac (HOL_ss
addsimps [zmod_zminus_zminus, zdiff_def,
zminus_zadd_distrib RS sym]) 1);
by (dtac (zminus_equation RS iffD1 RS sym) 1);
by Auto_tac;
qed "neg_zmod_mult_2";
Goal "number_of (v BIT b) mod number_of (w BIT False) = \
\ (if b then \
\ if (#0::int) <= number_of w \
\ then #2 * (number_of v mod number_of w) + #1 \
\ else #2 * ((number_of v + (#1::int)) mod number_of w) - #1 \
\ else #2 * (number_of v mod number_of w))";
by (simp_tac (simpset_of Int.thy addsimps [zadd_assoc, number_of_BIT]) 1);
by (asm_simp_tac (simpset()
delsimps bin_arith_extra_simps@bin_rel_simps
addsimps [zmod_zmult_zmult1,
pos_zmod_mult_2, lemma, neg_zmod_mult_2]) 1);
qed "zmod_number_of_BIT";
Addsimps [zmod_number_of_BIT];
(** Quotients of signs **)
Goal "[| a < (#0::int); #0 < b |] ==> a div b < #0";
by (subgoal_tac "a div b <= #-1" 1);
by (Force_tac 1);
by (rtac order_trans 1);
by (res_inst_tac [("a'","#-1")] zdiv_mono1 1);
by (auto_tac (claset(), simpset() addsimps [zdiv_minus1]));
qed "div_neg_pos_less0";
Goal "[| (#0::int) <= a; b < #0 |] ==> a div b <= #0";
by (dtac zdiv_mono1_neg 1);
by Auto_tac;
qed "div_nonneg_neg_le0";
Goal "(#0::int) < b ==> (#0 <= a div b) = (#0 <= a)";
by Auto_tac;
by (dtac zdiv_mono1 2);
by (auto_tac (claset(), simpset() addsimps [linorder_neq_iff]));
by (full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1);
by (blast_tac (claset() addIs [div_neg_pos_less0]) 1);
qed "pos_imp_zdiv_nonneg_iff";
Goal "b < (#0::int) ==> (#0 <= a div b) = (a <= (#0::int))";
by (stac (zdiv_zminus_zminus RS sym) 1);
by (stac pos_imp_zdiv_nonneg_iff 1);
by Auto_tac;
qed "neg_imp_zdiv_nonneg_iff";
(*But not (a div b <= 0 iff a<=0); consider a=1, b=2 when a div b = 0.*)
Goal "(#0::int) < b ==> (a div b < #0) = (a < #0)";
by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
pos_imp_zdiv_nonneg_iff]) 1);
qed "pos_imp_zdiv_neg_iff";
(*Again the law fails for <=: consider a = -1, b = -2 when a div b = 0*)
Goal "b < (#0::int) ==> (a div b < #0) = (#0 < a)";
by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
neg_imp_zdiv_nonneg_iff]) 1);
qed "neg_imp_zdiv_neg_iff";