src/HOLCF/Cont.thy
 author huffman Fri, 04 Mar 2005 23:12:36 +0100 changeset 15576 efb95d0d01f7 parent 15565 2454493bd77b child 15577 e16da3068ad6 permissions -rw-r--r--
converted to new-style theories, and combined numbered files
```
(*  Title:      HOLCF/cont.thy
ID:         \$Id\$
Author:     Franz Regensburger

*)

theory Cont = FunCpo:

(*

Now we change the default class! Form now on all untyped typevariables are
of default class po

*)

defaultsort po

consts
monofun :: "('a => 'b) => bool" (* monotonicity    *)
contlub :: "('a::cpo => 'b::cpo) => bool"         (* first cont. def *)
cont    :: "('a::cpo => 'b::cpo) => bool"         (* secnd cont. def *)

defs

monofun:         "monofun(f) == ! x y. x << y --> f(x) << f(y)"

contlub:         "contlub(f) == ! Y. chain(Y) -->
f(lub(range(Y))) = lub(range(% i. f(Y(i))))"

cont:            "cont(f)   == ! Y. chain(Y) -->
range(% i. f(Y(i))) <<| f(lub(range(Y)))"

(* ------------------------------------------------------------------------ *)
(* the main purpose of cont.thy is to show:                                 *)
(*              monofun(f) & contlub(f)  <==> cont(f)                       *)
(* ------------------------------------------------------------------------ *)

(*  Title:      HOLCF/Cont.ML
ID:         \$Id\$
Author:     Franz Regensburger

*)

(* ------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------ *)

lemma contlubI:
"! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))==>
contlub(f)"
apply (unfold contlub)
apply assumption
done

lemma contlubE:
" contlub(f)==>
! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))"
apply (unfold contlub)
apply assumption
done

lemma contI:
"! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y))) ==> cont(f)"

apply (unfold cont)
apply assumption
done

lemma contE:
"cont(f) ==> ! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y)))"
apply (unfold cont)
apply assumption
done

lemma monofunI:
"! x y. x << y --> f(x) << f(y) ==> monofun(f)"
apply (unfold monofun)
apply assumption
done

lemma monofunE:
"monofun(f) ==> ! x y. x << y --> f(x) << f(y)"
apply (unfold monofun)
apply assumption
done

(* ------------------------------------------------------------------------ *)
(* the main purpose of cont.thy is to show:                                 *)
(*              monofun(f) & contlub(f)  <==> cont(f)                      *)
(* ------------------------------------------------------------------------ *)

(* ------------------------------------------------------------------------ *)
(* monotone functions map chains to chains                                  *)
(* ------------------------------------------------------------------------ *)

lemma ch2ch_monofun:
"[| monofun(f); chain(Y) |] ==> chain(%i. f(Y(i)))"
apply (rule chainI)
apply (erule monofunE [THEN spec, THEN spec, THEN mp])
apply (erule chainE)
done

(* ------------------------------------------------------------------------ *)
(* monotone functions map upper bound to upper bounds                       *)
(* ------------------------------------------------------------------------ *)

lemma ub2ub_monofun:
"[| monofun(f); range(Y) <| u|]  ==> range(%i. f(Y(i))) <| f(u)"
apply (rule ub_rangeI)
apply (erule monofunE [THEN spec, THEN spec, THEN mp])
apply (erule ub_rangeD)
done

(* ------------------------------------------------------------------------ *)
(* left to right: monofun(f) & contlub(f)  ==> cont(f)                     *)
(* ------------------------------------------------------------------------ *)

lemma monocontlub2cont:
"[|monofun(f);contlub(f)|] ==> cont(f)"
apply (unfold cont)
apply (intro strip)
apply (rule thelubE)
apply (erule ch2ch_monofun)
apply assumption
apply (erule contlubE [THEN spec, THEN mp, symmetric])
apply assumption
done

(* ------------------------------------------------------------------------ *)
(* first a lemma about binary chains                                        *)
(* ------------------------------------------------------------------------ *)

lemma binchain_cont: "[| cont(f); x << y |]
==> range(%i::nat. f(if i = 0 then x else y)) <<| f(y)"
apply (rule subst)
prefer 2 apply (erule contE [THEN spec, THEN mp])
apply (erule bin_chain)
apply (rule_tac y = "y" in arg_cong)
apply (erule lub_bin_chain [THEN thelubI])
done

(* ------------------------------------------------------------------------ *)
(* right to left: cont(f) ==> monofun(f) & contlub(f)                      *)
(* part1:         cont(f) ==> monofun(f                                    *)
(* ------------------------------------------------------------------------ *)

lemma cont2mono: "cont(f) ==> monofun(f)"
apply (unfold monofun)
apply (intro strip)
apply (drule binchain_cont [THEN is_ub_lub])
done

(* ------------------------------------------------------------------------ *)
(* right to left: cont(f) ==> monofun(f) & contlub(f)                      *)
(* part2:         cont(f) ==>              contlub(f)                      *)
(* ------------------------------------------------------------------------ *)

lemma cont2contlub: "cont(f) ==> contlub(f)"
apply (unfold contlub)
apply (intro strip)
apply (rule thelubI [symmetric])
apply (erule contE [THEN spec, THEN mp])
apply assumption
done

(* ------------------------------------------------------------------------ *)
(* monotone functions map finite chains to finite chains                    *)
(* ------------------------------------------------------------------------ *)

lemma monofun_finch2finch:
"[| monofun f; finite_chain Y |] ==> finite_chain (%n. f (Y n))"
apply (unfold finite_chain_def)
apply (force elim!: ch2ch_monofun simp add: max_in_chain_def)
done

(* ------------------------------------------------------------------------ *)
(* The same holds for continuous functions                                  *)
(* ------------------------------------------------------------------------ *)

lemmas cont_finch2finch = cont2mono [THEN monofun_finch2finch, standard]
(* [| cont ?f; finite_chain ?Y |] ==> finite_chain (%n. ?f (?Y n)) *)

(* ------------------------------------------------------------------------ *)
(* The following results are about a curried function that is monotone      *)
(* in both arguments                                                        *)
(* ------------------------------------------------------------------------ *)

lemma ch2ch_MF2L:
"[|monofun(MF2); chain(F)|] ==> chain(%i. MF2 (F i) x)"
apply (erule ch2ch_monofun [THEN ch2ch_fun])
apply assumption
done

lemma ch2ch_MF2R:
"[|monofun(MF2(f)); chain(Y)|] ==> chain(%i. MF2 f (Y i))"
apply (erule ch2ch_monofun)
apply assumption
done

lemma ch2ch_MF2LR:
"[|monofun(MF2); !f. monofun(MF2(f)); chain(F); chain(Y)|] ==>
chain(%i. MF2(F(i))(Y(i)))"
apply (rule chainI)
apply (rule trans_less)
apply (erule ch2ch_MF2L [THEN chainE])
apply assumption
apply (rule monofunE [THEN spec, THEN spec, THEN mp], erule spec)
apply (erule chainE)
done

lemma ch2ch_lubMF2R:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(F);chain(Y)|] ==>
chain(%j. lub(range(%i. MF2 (F j) (Y i))))"
apply (rule lub_mono [THEN chainI])
apply (rule ch2ch_MF2R, erule spec)
apply assumption
apply (rule ch2ch_MF2R, erule spec)
apply assumption
apply (intro strip)
apply (rule chainE)
apply (erule ch2ch_MF2L)
apply assumption
done

lemma ch2ch_lubMF2L:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(F);chain(Y)|] ==>
chain(%i. lub(range(%j. MF2 (F j) (Y i))))"
apply (rule lub_mono [THEN chainI])
apply (erule ch2ch_MF2L)
apply assumption
apply (erule ch2ch_MF2L)
apply assumption
apply (intro strip)
apply (rule chainE)
apply (rule ch2ch_MF2R, erule spec)
apply assumption
done

lemma lub_MF2_mono:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(F)|] ==>
monofun(% x. lub(range(% j. MF2 (F j) (x))))"
apply (rule monofunI)
apply (intro strip)
apply (rule lub_mono)
apply (erule ch2ch_MF2L)
apply assumption
apply (erule ch2ch_MF2L)
apply assumption
apply (intro strip)
apply (rule monofunE [THEN spec, THEN spec, THEN mp], erule spec)
apply assumption
done

lemma ex_lubMF2:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(F); chain(Y)|] ==>
lub(range(%j. lub(range(%i. MF2(F j) (Y i))))) =
lub(range(%i. lub(range(%j. MF2(F j) (Y i)))))"
apply (rule antisym_less)
apply (rule is_lub_thelub[OF _ ub_rangeI])
apply (erule ch2ch_lubMF2R)
apply (assumption+)
apply (rule lub_mono)
apply (rule ch2ch_MF2R, erule spec)
apply assumption
apply (erule ch2ch_lubMF2L)
apply (assumption+)
apply (intro strip)
apply (rule is_ub_thelub)
apply (erule ch2ch_MF2L)
apply assumption
apply (rule is_lub_thelub[OF _ ub_rangeI])
apply (erule ch2ch_lubMF2L)
apply (assumption+)
apply (rule lub_mono)
apply (erule ch2ch_MF2L)
apply assumption
apply (erule ch2ch_lubMF2R)
apply (assumption+)
apply (intro strip)
apply (rule is_ub_thelub)
apply (rule ch2ch_MF2R, erule spec)
apply assumption
done

lemma diag_lubMF2_1:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(FY);chain(TY)|] ==>
lub(range(%i. lub(range(%j. MF2(FY(j))(TY(i)))))) =
lub(range(%i. MF2(FY(i))(TY(i))))"
apply (rule antisym_less)
apply (rule is_lub_thelub[OF _ ub_rangeI])
apply (erule ch2ch_lubMF2L)
apply (assumption+)
apply (rule lub_mono3)
apply (erule ch2ch_MF2L)
apply (assumption+)
apply (erule ch2ch_MF2LR)
apply (assumption+)
apply (rule allI)
apply (rule_tac m = "i" and n = "ia" in nat_less_cases)
apply (rule_tac x = "ia" in exI)
apply (rule chain_mono)
apply (erule allE)
apply (erule ch2ch_MF2R)
apply (assumption+)
apply (erule ssubst)
apply (rule_tac x = "ia" in exI)
apply (rule refl_less)
apply (rule_tac x = "i" in exI)
apply (rule chain_mono)
apply (erule ch2ch_MF2L)
apply (assumption+)
apply (rule lub_mono)
apply (erule ch2ch_MF2LR)
apply (assumption+)
apply (erule ch2ch_lubMF2L)
apply (assumption+)
apply (intro strip)
apply (rule is_ub_thelub)
apply (erule ch2ch_MF2L)
apply assumption
done

lemma diag_lubMF2_2:
"[|monofun(MF2::('a::po=>'b::po=>'c::cpo));
!f. monofun(MF2(f)::('b::po=>'c::cpo));
chain(FY);chain(TY)|] ==>
lub(range(%j. lub(range(%i. MF2(FY(j))(TY(i)))))) =
lub(range(%i. MF2(FY(i))(TY(i))))"
apply (rule trans)
apply (rule ex_lubMF2)
apply (assumption+)
apply (erule diag_lubMF2_1)
apply (assumption+)
done

(* ------------------------------------------------------------------------ *)
(* The following results are about a curried function that is continuous    *)
(* in both arguments                                                        *)
(* ------------------------------------------------------------------------ *)

lemma contlub_CF2:
assumes prem1: "cont(CF2)"
assumes prem2: "!f. cont(CF2(f))"
assumes prem3: "chain(FY)"
assumes prem4: "chain(TY)"
shows "CF2(lub(range(FY)))(lub(range(TY))) = lub(range(%i. CF2(FY(i))(TY(i))))"
apply (subst prem1 [THEN cont2contlub, THEN contlubE, THEN spec, THEN mp])
apply assumption
apply (subst thelub_fun)
apply (rule prem1 [THEN cont2mono [THEN ch2ch_monofun]])
apply assumption
apply (rule trans)
apply (rule prem2 [THEN spec, THEN cont2contlub, THEN contlubE, THEN spec, THEN mp, THEN ext, THEN arg_cong, THEN arg_cong])
apply (rule prem4)
apply (rule diag_lubMF2_2)
apply (auto simp add: cont2mono prems)
done

(* ------------------------------------------------------------------------ *)
(* The following results are about application for functions in 'a=>'b      *)
(* ------------------------------------------------------------------------ *)

lemma monofun_fun_fun: "f1 << f2 ==> f1(x) << f2(x)"
apply (erule less_fun [THEN iffD1, THEN spec])
done

lemma monofun_fun_arg: "[|monofun(f); x1 << x2|] ==> f(x1) << f(x2)"
apply (erule monofunE [THEN spec, THEN spec, THEN mp])
apply assumption
done

lemma monofun_fun: "[|monofun(f1); monofun(f2); f1 << f2; x1 << x2|] ==> f1(x1) << f2(x2)"
apply (rule trans_less)
apply (erule monofun_fun_arg)
apply assumption
apply (erule monofun_fun_fun)
done

(* ------------------------------------------------------------------------ *)
(* The following results are about the propagation of monotonicity and      *)
(* continuity                                                               *)
(* ------------------------------------------------------------------------ *)

lemma mono2mono_MF1L: "[|monofun(c1)|] ==> monofun(%x. c1 x y)"
apply (rule monofunI)
apply (intro strip)
apply (erule monofun_fun_arg [THEN monofun_fun_fun])
apply assumption
done

lemma cont2cont_CF1L: "[|cont(c1)|] ==> cont(%x. c1 x y)"
apply (rule monocontlub2cont)
apply (erule cont2mono [THEN mono2mono_MF1L])
apply (rule contlubI)
apply (intro strip)
apply (frule asm_rl)
apply (erule cont2contlub [THEN contlubE, THEN spec, THEN mp, THEN ssubst])
apply assumption
apply (subst thelub_fun)
apply (rule ch2ch_monofun)
apply (erule cont2mono)
apply assumption
apply (rule refl)
done

(*********  Note "(%x.%y.c1 x y) = c1" ***********)

lemma mono2mono_MF1L_rev: "!y. monofun(%x. c1 x y) ==> monofun(c1)"
apply (rule monofunI)
apply (intro strip)
apply (rule less_fun [THEN iffD2])
apply (blast dest: monofunE)
done

lemma cont2cont_CF1L_rev: "!y. cont(%x. c1 x y) ==> cont(c1)"
apply (rule monocontlub2cont)
apply (rule cont2mono [THEN allI, THEN mono2mono_MF1L_rev])
apply (erule spec)
apply (rule contlubI)
apply (intro strip)
apply (rule ext)
apply (subst thelub_fun)
apply (rule cont2mono [THEN allI, THEN mono2mono_MF1L_rev, THEN ch2ch_monofun])
apply (erule spec)
apply assumption
apply (blast dest: cont2contlub [THEN contlubE])
done

(* ------------------------------------------------------------------------ *)
(* What D.A.Schmidt calls continuity of abstraction                         *)
(* never used here                                                          *)
(* ------------------------------------------------------------------------ *)

lemma contlub_abstraction:
"[|chain(Y::nat=>'a);!y. cont(%x.(c::'a::cpo=>'b::cpo=>'c::cpo) x y)|] ==>
(%y. lub(range(%i. c (Y i) y))) = (lub(range(%i.%y. c (Y i) y)))"
apply (rule trans)
prefer 2 apply (rule cont2contlub [THEN contlubE, THEN spec, THEN mp])
prefer 2 apply (assumption)
apply (erule cont2cont_CF1L_rev)
apply (rule ext)
apply (rule cont2contlub [THEN contlubE, THEN spec, THEN mp, symmetric])
apply (erule spec)
apply assumption
done

lemma mono2mono_app: "[|monofun(ft);!x. monofun(ft(x));monofun(tt)|] ==>
monofun(%x.(ft(x))(tt(x)))"
apply (rule monofunI)
apply (intro strip)
apply (rule_tac ?f1.0 = "ft(x)" and ?f2.0 = "ft(y)" in monofun_fun)
apply (erule spec)
apply (erule spec)
apply (erule monofunE [THEN spec, THEN spec, THEN mp])
apply assumption
apply (erule monofunE [THEN spec, THEN spec, THEN mp])
apply assumption
done

lemma cont2contlub_app: "[|cont(ft);!x. cont(ft(x));cont(tt)|] ==> contlub(%x.(ft(x))(tt(x)))"
apply (rule contlubI)
apply (intro strip)
apply (rule_tac f3 = "tt" in contlubE [THEN spec, THEN mp, THEN ssubst])
apply (erule cont2contlub)
apply assumption
apply (rule contlub_CF2)
apply (assumption+)
apply (erule cont2mono [THEN ch2ch_monofun])
apply assumption
done

lemma cont2cont_app: "[|cont(ft); !x. cont(ft(x)); cont(tt)|] ==> cont(%x.(ft(x))(tt(x)))"
apply (blast intro: monocontlub2cont mono2mono_app cont2mono cont2contlub_app)
done

lemmas cont2cont_app2 = cont2cont_app[OF _ allI]
(*  [| cont ?ft; !!x. cont (?ft x); cont ?tt |] ==> *)
(*        cont (%x. ?ft x (?tt x))                    *)

(* ------------------------------------------------------------------------ *)
(* The identity function is continuous                                      *)
(* ------------------------------------------------------------------------ *)

lemma cont_id: "cont(% x. x)"
apply (rule contI)
apply (intro strip)
apply (erule thelubE)
apply (rule refl)
done

(* ------------------------------------------------------------------------ *)
(* constant functions are continuous                                        *)
(* ------------------------------------------------------------------------ *)

lemma cont_const: "cont(%x. c)"
apply (unfold cont)
apply (intro strip)
apply (blast intro: is_lubI ub_rangeI dest: ub_rangeD)
done

lemma cont2cont_app3: "[|cont(f); cont(t) |] ==> cont(%x. f(t(x)))"
apply (best intro: cont2cont_app2 cont_const)
done

(* ------------------------------------------------------------------------ *)
(* A non-emptyness result for Cfun                                          *)
(* ------------------------------------------------------------------------ *)

lemma CfunI: "?x:Collect cont"
apply (rule CollectI)
apply (rule cont_const)
done

(* ------------------------------------------------------------------------ *)
(* some properties of flat                                                  *)
(* ------------------------------------------------------------------------ *)

lemma flatdom2monofun: "f UU = UU ==> monofun (f::'a::flat=>'b::pcpo)"

apply (unfold monofun)
apply (intro strip)
apply (drule ax_flat [THEN spec, THEN spec, THEN mp])
apply auto
done

declare range_composition [simp del]
lemma chfindom_monofun2cont: "monofun f ==> cont(f::'a::chfin=>'b::pcpo)"
apply (rule monocontlub2cont)
apply assumption
apply (rule contlubI)
apply (intro strip)
apply (frule chfin2finch)
apply (rule antisym_less)
apply (clarsimp simp add: finite_chain_def maxinch_is_thelub)
apply (rule is_ub_thelub)
apply (erule ch2ch_monofun)
apply assumption
apply (drule monofun_finch2finch[COMP swap_prems_rl])
apply assumption