ZF/Inductive.thy,.ML: renamed from "inductive" to allow re-building without
the keyword "inductive" making the theory file fail
ZF/Makefile: now has Inductive.thy,.ML
ZF/Datatype,Finite,Zorn: depend upon Inductive
ZF/intr_elim: now checks that the inductive name does not clash with
existing theory names
ZF/ind_section: deleted things replicated in Pure/section_utils.ML
ZF/ROOT: now loads Pure/section_utils
(* Title: ZF/pair
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Ordered pairs in Zermelo-Fraenkel Set Theory
*)
(** Lemmas for showing that <a,b> uniquely determines a and b **)
val doubleton_iff = prove_goal ZF.thy
"{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
(fn _=> [ (resolve_tac [extension RS iff_trans] 1),
(fast_tac upair_cs 1) ]);
val Pair_iff = prove_goalw ZF.thy [Pair_def]
"<a,b> = <c,d> <-> a=c & b=d"
(fn _=> [ (simp_tac (FOL_ss addsimps [doubleton_iff]) 1),
(fast_tac FOL_cs 1) ]);
val Pair_inject = standard (Pair_iff RS iffD1 RS conjE);
val Pair_inject1 = prove_goal ZF.thy "<a,b> = <c,d> ==> a=c"
(fn [major]=>
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
val Pair_inject2 = prove_goal ZF.thy "<a,b> = <c,d> ==> b=d"
(fn [major]=>
[ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "<a,b>=0 ==> P"
(fn [major]=>
[ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1),
(rtac consI1 1) ]);
val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "<a,b>=a ==> P"
(fn [major]=>
[ (rtac (consI1 RS mem_asym RS FalseE) 1),
(rtac (major RS subst) 1),
(rtac consI1 1) ]);
val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "<a,b>=b ==> P"
(fn [major]=>
[ (rtac (consI1 RS consI2 RS mem_asym RS FalseE) 1),
(rtac (major RS subst) 1),
(rtac (consI1 RS consI2) 1) ]);
(*** Sigma: Disjoint union of a family of sets
Generalizes Cartesian product ***)
val SigmaI = prove_goalw ZF.thy [Sigma_def]
"[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"
(fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]);
(*The general elimination rule*)
val SigmaE = prove_goalw ZF.thy [Sigma_def]
"[| c: Sigma(A,B); \
\ !!x y.[| x:A; y:B(x); c=<x,y> |] ==> P \
\ |] ==> P"
(fn major::prems=>
[ (cut_facts_tac [major] 1),
(REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);
(** Elimination of <a,b>:A*B -- introduces no eigenvariables **)
val SigmaD1 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> a : A"
(fn [major]=>
[ (rtac (major RS SigmaE) 1),
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
val SigmaD2 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> b : B(a)"
(fn [major]=>
[ (rtac (major RS SigmaE) 1),
(REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
(*Also provable via
rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)
THEN prune_params_tac)
(read_instantiate [("c","<a,b>")] SigmaE); *)
val SigmaE2 = prove_goal ZF.thy
"[| <a,b> : Sigma(A,B); \
\ [| a:A; b:B(a) |] ==> P \
\ |] ==> P"
(fn [major,minor]=>
[ (rtac minor 1),
(rtac (major RS SigmaD1) 1),
(rtac (major RS SigmaD2) 1) ]);
val Sigma_cong = prove_goalw ZF.thy [Sigma_def]
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> \
\ Sigma(A,B) = Sigma(A',B')"
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [RepFun_cong]) 1) ]);
val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0"
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0"
(fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
(*** Eliminator - split ***)
val split = prove_goalw ZF.thy [split_def]
"split(%x y.c(x,y), <a,b>) = c(a,b)"
(fn _ =>
[ (fast_tac (upair_cs addIs [the_equality] addSEs [Pair_inject]) 1) ]);
val split_type = prove_goal ZF.thy
"[| p:Sigma(A,B); \
\ !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \
\ |] ==> split(%x y.c(x,y), p) : C(p)"
(fn major::prems=>
[ (rtac (major RS SigmaE) 1),
(etac ssubst 1),
(REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]);
goal ZF.thy
"!!u. u: A*B ==> \
\ R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))";
by (etac SigmaE 1);
by (asm_simp_tac (FOL_ss addsimps [split]) 1);
by (fast_tac (upair_cs addSEs [Pair_inject]) 1);
val expand_split = result();
(*** conversions for fst and snd ***)
val fst_conv = prove_goalw ZF.thy [fst_def] "fst(<a,b>) = a"
(fn _=> [ (rtac split 1) ]);
val snd_conv = prove_goalw ZF.thy [snd_def] "snd(<a,b>) = b"
(fn _=> [ (rtac split 1) ]);
(*** split for predicates: result type o ***)
goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, <a,b>)";
by (REPEAT (ares_tac [refl,exI,conjI] 1));
val fsplitI = result();
val major::prems = goalw ZF.thy [fsplit_def]
"[| fsplit(R,z); !!x y. [| z = <x,y>; R(x,y) |] ==> P |] ==> P";
by (cut_facts_tac [major] 1);
by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1));
val fsplitE = result();
goal ZF.thy "!!R a b. fsplit(R,<a,b>) ==> R(a,b)";
by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1));
val fsplitD = result();
val pair_cs = upair_cs
addSIs [SigmaI]
addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject,
Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0];
(*** Basic simplification for ZF; see simpdata.ML for full version ***)
fun prove_fun s =
(writeln s; prove_goal ZF.thy s
(fn prems => [ (cut_facts_tac prems 1), (fast_tac pair_cs 1) ]));
(*INCLUDED IN ZF_ss*)
val mem_simps = map prove_fun
[ "a : 0 <-> False",
"a : A Un B <-> a:A | a:B",
"a : A Int B <-> a:A & a:B",
"a : A-B <-> a:A & ~a:B",
"<a,b>: Sigma(A,B) <-> a:A & b:B(a)",
"a : Collect(A,P) <-> a:A & P(a)" ];
goal ZF.thy "{x.x:A} = A";
by (fast_tac (pair_cs addSIs [equalityI]) 1);
val triv_RepFun = result();
(*INCLUDED: should be??*)
val bquant_simps = map prove_fun
[ "(ALL x:0.P(x)) <-> True",
"(EX x:0.P(x)) <-> False",
"(ALL x:succ(i).P(x)) <-> P(i) & (ALL x:i.P(x))",
"(EX x:succ(i).P(x)) <-> P(i) | (EX x:i.P(x))" ];