(* Title: ZF/IMP/Denotation.thy
ID: $Id$
Author: Heiko Loetzbeyer & Robert Sandner, TUM
Copyright 1994 TUM
Denotational semantics of expressions & commands
*)
Denotation = Com +
consts
A :: i => i => i
B :: i => i => i
C :: i => i
Gamma :: [i,i,i] => i
rules (*NOT definitional*)
A_nat_def "A(N(n)) == (%sigma. n)"
A_loc_def "A(X(x)) == (%sigma. sigma`x)"
A_op1_def "A(Op1(f,a)) == (%sigma. f`A(a,sigma))"
A_op2_def "A(Op2(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)"
B_true_def "B(true) == (%sigma. 1)"
B_false_def "B(false) == (%sigma. 0)"
B_op_def "B(ROp(f,a0,a1)) == (%sigma. f`<A(a0,sigma),A(a1,sigma)>)"
B_not_def "B(noti(b)) == (%sigma. not(B(b,sigma)))"
B_and_def "B(b0 andi b1) == (%sigma. B(b0,sigma) and B(b1,sigma))"
B_or_def "B(b0 ori b1) == (%sigma. B(b0,sigma) or B(b1,sigma))"
C_skip_def "C(skip) == id(loc->nat)"
C_assign_def "C(x := a) == {io:(loc->nat)*(loc->nat).
snd(io) = fst(io)[A(a,fst(io))/x]}"
C_comp_def "C(c0 ; c1) == C(c1) O C(c0)"
C_if_def "C(ifc b then c0 else c1) == {io:C(c0). B(b,fst(io))=1} Un
{io:C(c1). B(b,fst(io))=0}"
Gamma_def "Gamma(b,c) == (%phi.{io : (phi O C(c)). B(b,fst(io))=1} Un
{io : id(loc->nat). B(b,fst(io))=0})"
C_while_def "C(while b do c) == lfp((loc->nat)*(loc->nat), Gamma(b,c))"
end