(* Title: HOLCF/Discrete.thy
ID: $Id$
Author: Tobias Nipkow
Discrete CPOs.
*)
header {* Discrete cpo types *}
theory Discrete
imports Cont Datatype
begin
datatype 'a discr = Discr "'a :: type"
subsection {* Type @{typ "'a discr"} is a partial order *}
instance discr :: (type) sq_ord ..
defs (overloaded)
less_discr_def: "((op <<)::('a::type)discr=>'a discr=>bool) == op ="
lemma discr_less_eq [iff]: "((x::('a::type)discr) << y) = (x = y)"
by (unfold less_discr_def) (rule refl)
instance discr :: (type) po
proof
fix x y z :: "'a discr"
show "x << x" by simp
{ assume "x << y" and "y << x" thus "x = y" by simp }
{ assume "x << y" and "y << z" thus "x << z" by simp }
qed
subsection {* Type @{typ "'a discr"} is a cpo *}
lemma discr_chain0:
"!!S::nat=>('a::type)discr. chain S ==> S i = S 0"
apply (unfold chain_def)
apply (induct_tac "i")
apply (rule refl)
apply (erule subst)
apply (rule sym)
apply fast
done
lemma discr_chain_range0 [simp]:
"!!S::nat=>('a::type)discr. chain(S) ==> range(S) = {S 0}"
by (fast elim: discr_chain0)
lemma discr_cpo:
"!!S. chain S ==> ? x::('a::type)discr. range(S) <<| x"
by (unfold is_lub_def is_ub_def) simp
instance discr :: (type) cpo
by intro_classes (rule discr_cpo)
subsection {* @{term undiscr} *}
constdefs
undiscr :: "('a::type)discr => 'a"
"undiscr x == (case x of Discr y => y)"
lemma undiscr_Discr [simp]: "undiscr(Discr x) = x"
by (simp add: undiscr_def)
lemma discr_chain_f_range0:
"!!S::nat=>('a::type)discr. chain(S) ==> range(%i. f(S i)) = {f(S 0)}"
by (fast dest: discr_chain0 elim: arg_cong)
lemma cont_discr [iff]: "cont(%x::('a::type)discr. f x)"
apply (unfold cont_def is_lub_def is_ub_def)
apply (simp add: discr_chain_f_range0)
done
end