(* $Id$ *)
(* Simple problem suggested by D. Wang *)
theory Height
imports "../Nominal"
begin
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam "\<guillemotleft>name\<guillemotright>lam" ("Lam [_]._" [100,100] 100)
text {* definition of the height-function on lambda-terms *}
consts
height :: "lam \<Rightarrow> int"
nominal_primrec
"height (Var x) = 1"
"height (App t1 t2) = (max (height t1) (height t2)) + 1"
"height (Lam [a].t) = (height t) + 1"
apply(finite_guess add: perm_int_def)+
apply(rule TrueI)+
apply(simp add: fresh_int)
apply(fresh_guess add: perm_int_def)+
done
text {* definition of capture-avoiding substitution *}
consts
subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" ("_[_::=_]" [100,100,100] 100)
nominal_primrec
"(Var x)[y::=t'] = (if x=y then t' else (Var x))"
"(App t1 t2)[y::=t'] = App (t1[y::=t']) (t2[y::=t'])"
"\<lbrakk>x\<sharp>y; x\<sharp>t'\<rbrakk> \<Longrightarrow> (Lam [x].t)[y::=t'] = Lam [x].(t[y::=t'])"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)
apply(fresh_guess)+
done
text{* the next lemma is needed in the Var-case of the theorem *}
lemma height_ge_one:
shows "1 \<le> (height e)"
by (nominal_induct e rule: lam.induct)
(simp | arith)+
text {* unlike the proplem suggested by Wang, however, the
theorem is here formulated entirely by using
functions *}
theorem height_subst:
shows "height (e[x::=e']) \<le> (((height e) - 1) + (height e'))"
proof (nominal_induct e avoiding: x e' rule: lam.induct)
case (Var y)
have "1 \<le> height e'" by (rule height_ge_one)
then show "height (Var y[x::=e']) \<le> height (Var y) - 1 + height e'" by simp
next
case (Lam y e1)
hence ih: "height (e1[x::=e']) \<le> (((height e1) - 1) + (height e'))" by simp
moreover
have vc: "y\<sharp>x" "y\<sharp>e'" by fact (* usual variable convention *)
ultimately show "height ((Lam [y].e1)[x::=e']) \<le> height (Lam [y].e1) - 1 + height e'" by simp
next
case (App e1 e2)
hence ih1: "height (e1[x::=e']) \<le> (((height e1) - 1) + (height e'))"
and ih2: "height (e2[x::=e']) \<le> (((height e2) - 1) + (height e'))" by simp_all
then show "height ((App e1 e2)[x::=e']) \<le> height (App e1 e2) - 1 + height e'" by simp
qed
end