added new kind generated_theorem for theorems which are generated by packages to distinguish between theorems from users and packages
(* Author: Tobias Nipkow, Florian Haftmann, TU Muenchen *)
header {* Character and string types *}
theory String
imports List
uses
"Tools/string_syntax.ML"
("Tools/string_code.ML")
begin
subsection {* Characters *}
datatype nibble =
Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
| Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
lemma UNIV_nibble:
"UNIV = {Nibble0, Nibble1, Nibble2, Nibble3, Nibble4, Nibble5, Nibble6, Nibble7,
Nibble8, Nibble9, NibbleA, NibbleB, NibbleC, NibbleD, NibbleE, NibbleF}" (is "_ = ?A")
proof (rule UNIV_eq_I)
fix x show "x \<in> ?A" by (cases x) simp_all
qed
instance nibble :: finite
by default (simp add: UNIV_nibble)
datatype char = Char nibble nibble
-- "Note: canonical order of character encoding coincides with standard term ordering"
lemma UNIV_char:
"UNIV = image (split Char) (UNIV \<times> UNIV)"
proof (rule UNIV_eq_I)
fix x show "x \<in> image (split Char) (UNIV \<times> UNIV)" by (cases x) auto
qed
instance char :: finite
by default (simp add: UNIV_char)
lemma size_char [code, simp]:
"size (c::char) = 0" by (cases c) simp
lemma char_size [code, simp]:
"char_size (c::char) = 0" by (cases c) simp
primrec nibble_pair_of_char :: "char \<Rightarrow> nibble \<times> nibble" where
"nibble_pair_of_char (Char n m) = (n, m)"
declare nibble_pair_of_char.simps [code del]
setup {*
let
val nibbles = map (Thm.cterm_of @{theory} o HOLogic.mk_nibble) (0 upto 15);
val thms = map_product
(fn n => fn m => Drule.instantiate' [] [SOME n, SOME m] @{thm nibble_pair_of_char.simps})
nibbles nibbles;
in
PureThy.note_thmss Thm.generated_theoremK [((Binding.name "nibble_pair_of_char_simps", []), [(thms, [])])]
#-> (fn [(_, thms)] => fold_rev Code.add_eqn thms)
end
*}
lemma char_case_nibble_pair [code, code inline]:
"char_case f = split f o nibble_pair_of_char"
by (simp add: expand_fun_eq split: char.split)
lemma char_rec_nibble_pair [code, code inline]:
"char_rec f = split f o nibble_pair_of_char"
unfolding char_case_nibble_pair [symmetric]
by (simp add: expand_fun_eq split: char.split)
syntax
"_Char" :: "xstr => char" ("CHR _")
subsection {* Strings *}
types string = "char list"
syntax
"_String" :: "xstr => string" ("_")
setup StringSyntax.setup
subsection {* Strings as dedicated datatype *}
datatype message_string = STR string
lemmas [code del] =
message_string.recs message_string.cases
lemma [code]: "size (s\<Colon>message_string) = 0"
by (cases s) simp_all
lemma [code]: "message_string_size (s\<Colon>message_string) = 0"
by (cases s) simp_all
subsection {* Code generator *}
use "Tools/string_code.ML"
code_type message_string
(SML "string")
(OCaml "string")
(Haskell "String")
setup {*
fold String_Code.add_literal_message ["SML", "OCaml", "Haskell"]
*}
code_instance message_string :: eq
(Haskell -)
code_const "eq_class.eq \<Colon> message_string \<Rightarrow> message_string \<Rightarrow> bool"
(SML "!((_ : string) = _)")
(OCaml "!((_ : string) = _)")
(Haskell infixl 4 "==")
code_reserved SML string
code_reserved OCaml string
types_code
"char" ("string")
attach (term_of) {*
val term_of_char = HOLogic.mk_char o ord;
*}
attach (test) {*
fun gen_char i =
let val j = random_range (ord "a") (Int.min (ord "a" + i, ord "z"))
in (chr j, fn () => HOLogic.mk_char j) end;
*}
setup {*
let
fun char_codegen thy defs dep thyname b t gr =
let
val i = HOLogic.dest_char t;
val (_, gr') = Codegen.invoke_tycodegen thy defs dep thyname false
(fastype_of t) gr;
in SOME (Codegen.str (ML_Syntax.print_string (chr i)), gr')
end handle TERM _ => NONE;
in Codegen.add_codegen "char_codegen" char_codegen end
*}
end