src/HOL/Real/HahnBanach/README.html
author webertj
Sun, 14 Nov 2004 01:40:27 +0100
changeset 15283 f21466450330
parent 7927 b50446a33c16
child 15582 7219facb3fd0
permissions -rw-r--r--
DOCTYPE declaration added

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<HTML><HEAD><TITLE>HOL/Real/HahnBanach/README</TITLE></HEAD><BODY>

<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>

Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>

This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
following H. Heuser, Funktionalanalysis, p. 228 -232.
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
It is a conclusion of Zorn's lemma.<P>

Two different formaulations of the theorem are presented, one for general real vectorspaces
and its application to normed vectorspaces. <P>

The theorem says, that every continous linearform, defined on arbitrary subspaces
(not only one-dimensional subspaces), can be extended to a continous linearform on
the whole vectorspace.


<HR>

<ADDRESS>
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
</ADDRESS>

</BODY></HTML>