(* Title: Tools/Code/code_namespace.ML
Author: Florian Haftmann, TU Muenchen
Mastering target language namespaces.
*)
signature CODE_NAMESPACE =
sig
type flat_program
val flat_program: (string -> string) -> { module_alias: string -> string option,
module_prefix: string, reserved: Name.context, empty_nsp: 'a,
namify_stmt: Code_Thingol.stmt -> string -> 'a -> string * 'a,
modify_stmt: Code_Thingol.stmt -> Code_Thingol.stmt option }
-> Code_Thingol.program
-> { deresolver: string -> string -> string,
flat_program: flat_program }
datatype ('a, 'b) node =
Dummy
| Stmt of 'a
| Module of ('b * (string * ('a, 'b) node) Graph.T)
type ('a, 'b) hierarchical_program
val hierarchical_program: (string -> string) -> { module_alias: string -> string option,
reserved: Name.context, empty_nsp: 'c, namify_module: string -> 'c -> string * 'c,
namify_stmt: Code_Thingol.stmt -> string -> 'c -> string * 'c,
cyclic_modules: bool, empty_data: 'b, memorize_data: string -> 'b -> 'b,
modify_stmts: (string * Code_Thingol.stmt) list -> 'a option list }
-> Code_Thingol.program
-> { deresolver: string list -> string -> string,
hierarchical_program: ('a, 'b) hierarchical_program }
val print_hierarchical: { print_module: string list -> string -> 'b -> 'c list -> 'c,
print_stmt: string list -> string * 'a -> 'c,
lift_markup: (Pretty.T -> Pretty.T) -> 'c -> 'c }
-> ('a, 'b) hierarchical_program -> 'c list
end;
structure Code_Namespace : CODE_NAMESPACE =
struct
(** building module name hierarchy **)
val dest_name =
apfst Long_Name.implode o split_last o fst o split_last o Long_Name.explode;
fun build_module_namespace { module_alias, module_prefix, reserved } program =
let
fun alias_fragments name = case module_alias name
of SOME name' => Long_Name.explode name'
| NONE => map (fn name => fst (yield_singleton Name.variants name reserved))
(Long_Name.explode name);
val module_names = Graph.fold (insert (op =) o fst o dest_name o fst) program [];
in
fold (fn name => Symtab.update (name, Long_Name.explode module_prefix @ alias_fragments name))
module_names Symtab.empty
end;
(** flat program structure **)
type flat_program = ((string * Code_Thingol.stmt option) Graph.T * (string * string list) list) Graph.T;
fun flat_program labelled_name { module_alias, module_prefix, reserved,
empty_nsp, namify_stmt, modify_stmt } program =
let
(* building module name hierarchy *)
val fragments_tab = build_module_namespace { module_alias = module_alias,
module_prefix = module_prefix, reserved = reserved } program;
val dest_name = dest_name
#>> (Long_Name.implode o the o Symtab.lookup fragments_tab);
(* distribute statements over hierarchy *)
fun add_stmt name stmt =
let
val (module_name, base) = dest_name name;
in
Graph.default_node (module_name, (Graph.empty, []))
#> (Graph.map_node module_name o apfst) (Graph.new_node (name, (base, stmt)))
end;
fun add_dependency name name' =
let
val (module_name, base) = dest_name name;
val (module_name', base') = dest_name name';
in if module_name = module_name'
then (Graph.map_node module_name o apfst) (Graph.add_edge (name, name'))
else (Graph.map_node module_name o apsnd) (AList.map_default (op =) (module_name', []) (insert (op =) name'))
end;
val proto_program = Graph.empty
|> Graph.fold (fn (name, (stmt, _)) => add_stmt name stmt) program
|> Graph.fold (fn (name, (_, (_, names))) => fold (add_dependency name) names) program;
(* name declarations and statement modifications *)
fun declare name (base, stmt) (gr, nsp) =
let
val (base', nsp') = namify_stmt stmt base nsp;
val gr' = (Graph.map_node name o apfst) (K base') gr;
in (gr', nsp') end;
fun declarations gr = (gr, empty_nsp)
|> fold (fn name => declare name (Graph.get_node gr name)) (Graph.keys gr)
|> fst
|> (Graph.map o K o apsnd) modify_stmt;
val flat_program = proto_program
|> (Graph.map o K o apfst) declarations;
(* qualified and unqualified imports, deresolving *)
fun base_deresolver name = fst (Graph.get_node
(fst (Graph.get_node flat_program (fst (dest_name name)))) name);
fun classify_names gr imports =
let
val import_tab = maps
(fn (module_name, names) => map (rpair module_name) names) imports;
val imported_names = map fst import_tab;
val here_names = Graph.keys gr;
in
Symtab.empty
|> fold (fn name => Symtab.update (name, base_deresolver name)) here_names
|> fold (fn name => Symtab.update (name,
Long_Name.append (the (AList.lookup (op =) import_tab name))
(base_deresolver name))) imported_names
end;
val name_tabs = AList.make (uncurry classify_names o Graph.get_node flat_program)
(Graph.keys flat_program);
val deresolver_tab = fold Symtab.update name_tabs Symtab.empty;
fun deresolver module_name name =
the (Symtab.lookup (the (Symtab.lookup deresolver_tab module_name)) name)
handle Option => error ("Unknown statement name: " ^ labelled_name name);
in { deresolver = deresolver, flat_program = flat_program } end;
(** hierarchical program structure **)
datatype ('a, 'b) node =
Dummy
| Stmt of 'a
| Module of ('b * (string * ('a, 'b) node) Graph.T);
type ('a, 'b) hierarchical_program = (string * ('a, 'b) node) Graph.T;
fun map_module_content f (Module content) = Module (f content);
fun map_module [] = I
| map_module (name_fragment :: name_fragments) =
apsnd o Graph.map_node name_fragment o apsnd o map_module_content
o map_module name_fragments;
fun hierarchical_program labelled_name { module_alias, reserved, empty_nsp,
namify_module, namify_stmt, cyclic_modules, empty_data, memorize_data, modify_stmts } program =
let
(* building module name hierarchy *)
val fragments_tab = build_module_namespace { module_alias = module_alias,
module_prefix = "", reserved = reserved } program;
val dest_name = dest_name #>> (the o Symtab.lookup fragments_tab);
(* building empty module hierarchy *)
val empty_module = (empty_data, Graph.empty);
fun ensure_module name_fragment (data, nodes) =
if can (Graph.get_node nodes) name_fragment then (data, nodes)
else (data,
nodes |> Graph.new_node (name_fragment, (name_fragment, Module empty_module)));
fun allocate_module [] = I
| allocate_module (name_fragment :: name_fragments) =
ensure_module name_fragment
#> (apsnd o Graph.map_node name_fragment o apsnd o map_module_content o allocate_module) name_fragments;
val empty_program = Symtab.fold (fn (_, fragments) => allocate_module fragments)
fragments_tab empty_module;
(* distribute statements over hierarchy *)
fun add_stmt name stmt =
let
val (name_fragments, base) = dest_name name;
in
(map_module name_fragments o apsnd) (Graph.new_node (name, (base, Stmt stmt)))
end;
fun add_dependency name name' =
let
val (name_fragments, base) = dest_name name;
val (name_fragments', base') = dest_name name';
val (name_fragments_common, (diff, diff')) =
chop_prefix (op =) (name_fragments, name_fragments');
val is_module = not (null diff andalso null diff');
val dep = pairself hd (diff @ [name], diff' @ [name']);
val add_edge = if is_module andalso not cyclic_modules
then (fn node => Graph.add_edge_acyclic dep node
handle Graph.CYCLES _ => error ("Dependency "
^ quote name ^ " -> " ^ quote name'
^ " would result in module dependency cycle"))
else Graph.add_edge dep
in (map_module name_fragments_common o apsnd) add_edge end;
val proto_program = empty_program
|> Graph.fold (fn (name, (stmt, _)) => add_stmt name stmt) program
|> Graph.fold (fn (name, (_, (_, names))) => fold (add_dependency name) names) program;
(* name declarations, data and statement modifications *)
fun make_declarations nsps (data, nodes) =
let
val (module_fragments, stmt_names) = List.partition
(fn name_fragment => case Graph.get_node nodes name_fragment
of (_, Module _) => true | _ => false) (Graph.keys nodes);
fun declare namify name (nsps, nodes) =
let
val (base, node) = Graph.get_node nodes name;
val (base', nsps') = namify node base nsps;
val nodes' = Graph.map_node name (K (base', node)) nodes;
in (nsps', nodes') end;
val (nsps', nodes') = (nsps, nodes)
|> fold (declare (K namify_module)) module_fragments
|> fold (declare (namify_stmt o (fn Stmt stmt => stmt))) stmt_names;
fun zip_fillup xs ys = xs ~~ ys @ replicate (length xs - length ys) NONE;
fun select_names names = case filter (member (op =) stmt_names) names
of [] => NONE
| xs => SOME xs;
val modify_stmts' = AList.make (snd o Graph.get_node nodes)
#> split_list
##> map (fn Stmt stmt => stmt)
#> (fn (names, stmts) => zip_fillup names (modify_stmts (names ~~ stmts)));
val stmtss' = (maps modify_stmts' o map_filter select_names o Graph.strong_conn) nodes;
val nodes'' = Graph.map (fn name => apsnd (fn Module content => Module (make_declarations nsps' content)
| _ => case AList.lookup (op =) stmtss' name of SOME (SOME stmt) => Stmt stmt | _ => Dummy)) nodes';
val data' = fold memorize_data stmt_names data;
in (data', nodes'') end;
val (_, hierarchical_program) = make_declarations empty_nsp proto_program;
(* deresolving *)
fun deresolver prefix_fragments name =
let
val (name_fragments, _) = dest_name name;
val (_, (_, remainder)) = chop_prefix (op =) (prefix_fragments, name_fragments);
val nodes = fold (fn name_fragment => fn nodes => case Graph.get_node nodes name_fragment
of (_, Module (_, nodes)) => nodes) name_fragments hierarchical_program;
val (base', _) = Graph.get_node nodes name;
in Long_Name.implode (remainder @ [base']) end
handle Graph.UNDEF _ => error ("Unknown statement name: " ^ labelled_name name);
in { deresolver = deresolver, hierarchical_program = hierarchical_program } end;
fun print_hierarchical { print_module, print_stmt, lift_markup } =
let
fun print_node _ (_, Dummy) =
NONE
| print_node prefix_fragments (name, Stmt stmt) =
SOME (lift_markup (Code_Printer.markup_stmt name)
(print_stmt prefix_fragments (name, stmt)))
| print_node prefix_fragments (name_fragment, Module (data, nodes)) =
let
val prefix_fragments' = prefix_fragments @ [name_fragment]
in
Option.map (print_module prefix_fragments'
name_fragment data) (print_nodes prefix_fragments' nodes)
end
and print_nodes prefix_fragments nodes =
let
val xs = (map_filter (fn name => print_node prefix_fragments
(name, snd (Graph.get_node nodes name))) o rev o flat o Graph.strong_conn) nodes
in if null xs then NONE else SOME xs end;
in these o print_nodes [] end;
end;