(* Title: HOL/Multivariate_Analysis/Euclidean_Space.thy
Author: Johannes Hölzl, TU München
Author: Brian Huffman, Portland State University
*)
header {* Finite-Dimensional Inner Product Spaces *}
theory Euclidean_Space
imports
L2_Norm
"~~/src/HOL/Library/Inner_Product"
"~~/src/HOL/Library/Product_Vector"
begin
subsection {* Type class of Euclidean spaces *}
class euclidean_space = real_inner +
fixes Basis :: "'a set"
assumes nonempty_Basis [simp]: "Basis \<noteq> {}"
assumes finite_Basis [simp]: "finite Basis"
assumes inner_Basis:
"\<lbrakk>u \<in> Basis; v \<in> Basis\<rbrakk> \<Longrightarrow> inner u v = (if u = v then 1 else 0)"
assumes euclidean_all_zero_iff:
"(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> (x = 0)"
-- "FIXME: make this a separate definition"
fixes dimension :: "'a itself \<Rightarrow> nat"
assumes dimension_def: "dimension TYPE('a) = card Basis"
-- "FIXME: eventually basis function can be removed"
fixes basis :: "nat \<Rightarrow> 'a"
assumes image_basis: "basis ` {..<dimension TYPE('a)} = Basis"
assumes basis_finite: "basis ` {dimension TYPE('a)..} = {0}"
syntax "_type_dimension" :: "type => nat" ("(1DIM/(1'(_')))")
translations "DIM('t)" == "CONST dimension (TYPE('t))"
lemma (in euclidean_space) norm_Basis: "u \<in> Basis \<Longrightarrow> norm u = 1"
unfolding norm_eq_sqrt_inner by (simp add: inner_Basis)
lemma (in euclidean_space) sgn_Basis: "u \<in> Basis \<Longrightarrow> sgn u = u"
unfolding sgn_div_norm by (simp add: norm_Basis scaleR_one)
lemma (in euclidean_space) Basis_zero [simp]: "0 \<notin> Basis"
proof
assume "0 \<in> Basis" thus "False"
using inner_Basis [of 0 0] by simp
qed
lemma (in euclidean_space) nonzero_Basis: "u \<in> Basis \<Longrightarrow> u \<noteq> 0"
by clarsimp
text {* Lemmas related to @{text basis} function. *}
lemma (in euclidean_space) euclidean_all_zero:
"(\<forall>i<DIM('a). inner (basis i) x = 0) \<longleftrightarrow> (x = 0)"
using euclidean_all_zero_iff [of x, folded image_basis]
unfolding ball_simps by (simp add: Ball_def inner_commute)
lemma (in euclidean_space) basis_zero [simp]:
"DIM('a) \<le> i \<Longrightarrow> basis i = 0"
using basis_finite by auto
lemma (in euclidean_space) DIM_positive [intro]: "0 < DIM('a)"
unfolding dimension_def by (simp add: card_gt_0_iff)
lemma (in euclidean_space) basis_inj [simp, intro]: "inj_on basis {..<DIM('a)}"
by (simp add: inj_on_iff_eq_card image_basis dimension_def [symmetric])
lemma (in euclidean_space) basis_in_Basis [simp]:
"basis i \<in> Basis \<longleftrightarrow> i < DIM('a)"
by (cases "i < DIM('a)", simp add: image_basis [symmetric], simp)
lemma (in euclidean_space) Basis_elim:
assumes "u \<in> Basis" obtains i where "i < DIM('a)" and "u = basis i"
using assms unfolding image_basis [symmetric] by fast
lemma (in euclidean_space) basis_orthonormal:
"\<forall>i<DIM('a). \<forall>j<DIM('a).
inner (basis i) (basis j) = (if i = j then 1 else 0)"
apply clarify
apply (simp add: inner_Basis)
apply (simp add: basis_inj [unfolded inj_on_def])
done
lemma (in euclidean_space) dot_basis:
"inner (basis i) (basis j) = (if i = j \<and> i < DIM('a) then 1 else 0)"
proof (cases "(i < DIM('a) \<and> j < DIM('a))")
case False
hence "inner (basis i) (basis j) = 0" by auto
thus ?thesis using False by auto
next
case True thus ?thesis using basis_orthonormal by auto
qed
lemma (in euclidean_space) basis_eq_0_iff [simp]:
"basis i = 0 \<longleftrightarrow> DIM('a) \<le> i"
proof -
have "inner (basis i) (basis i) = 0 \<longleftrightarrow> DIM('a) \<le> i"
by (simp add: dot_basis)
thus ?thesis by simp
qed
lemma (in euclidean_space) norm_basis [simp]:
"norm (basis i) = (if i < DIM('a) then 1 else 0)"
unfolding norm_eq_sqrt_inner dot_basis by simp
lemma (in euclidean_space) basis_neq_0 [intro]:
assumes "i<DIM('a)" shows "(basis i) \<noteq> 0"
using assms by simp
subsubsection {* Projecting components *}
definition (in euclidean_space) euclidean_component (infixl "$$" 90)
where "x $$ i = inner (basis i) x"
lemma bounded_linear_euclidean_component:
"bounded_linear (\<lambda>x. euclidean_component x i)"
unfolding euclidean_component_def
by (rule bounded_linear_inner_right)
lemmas tendsto_euclidean_component [tendsto_intros] =
bounded_linear.tendsto [OF bounded_linear_euclidean_component]
lemmas isCont_euclidean_component [simp] =
bounded_linear.isCont [OF bounded_linear_euclidean_component]
lemma euclidean_component_zero [simp]: "0 $$ i = 0"
unfolding euclidean_component_def by (rule inner_zero_right)
lemma euclidean_component_add [simp]: "(x + y) $$ i = x $$ i + y $$ i"
unfolding euclidean_component_def by (rule inner_add_right)
lemma euclidean_component_diff [simp]: "(x - y) $$ i = x $$ i - y $$ i"
unfolding euclidean_component_def by (rule inner_diff_right)
lemma euclidean_component_minus [simp]: "(- x) $$ i = - (x $$ i)"
unfolding euclidean_component_def by (rule inner_minus_right)
lemma euclidean_component_scaleR [simp]: "(scaleR a x) $$ i = a * (x $$ i)"
unfolding euclidean_component_def by (rule inner_scaleR_right)
lemma euclidean_component_setsum [simp]: "(\<Sum>x\<in>A. f x) $$ i = (\<Sum>x\<in>A. f x $$ i)"
unfolding euclidean_component_def by (rule inner_setsum_right)
lemma euclidean_eqI:
fixes x y :: "'a::euclidean_space"
assumes "\<And>i. i < DIM('a) \<Longrightarrow> x $$ i = y $$ i" shows "x = y"
proof -
from assms have "\<forall>i<DIM('a). (x - y) $$ i = 0"
by simp
then show "x = y"
unfolding euclidean_component_def euclidean_all_zero by simp
qed
lemma euclidean_eq:
fixes x y :: "'a::euclidean_space"
shows "x = y \<longleftrightarrow> (\<forall>i<DIM('a). x $$ i = y $$ i)"
by (auto intro: euclidean_eqI)
lemma (in euclidean_space) basis_component [simp]:
"basis i $$ j = (if i = j \<and> i < DIM('a) then 1 else 0)"
unfolding euclidean_component_def dot_basis by auto
lemma (in euclidean_space) basis_at_neq_0 [intro]:
"i < DIM('a) \<Longrightarrow> basis i $$ i \<noteq> 0"
by simp
lemma (in euclidean_space) euclidean_component_ge [simp]:
assumes "i \<ge> DIM('a)" shows "x $$ i = 0"
unfolding euclidean_component_def basis_zero[OF assms] by simp
lemmas euclidean_simps =
euclidean_component_add
euclidean_component_diff
euclidean_component_scaleR
euclidean_component_minus
euclidean_component_setsum
basis_component
lemma euclidean_representation:
fixes x :: "'a::euclidean_space"
shows "x = (\<Sum>i<DIM('a). (x$$i) *\<^sub>R basis i)"
apply (rule euclidean_eqI)
apply (simp add: if_distrib setsum_delta cong: if_cong)
done
subsubsection {* Binder notation for vectors *}
definition (in euclidean_space) Chi (binder "\<chi>\<chi> " 10) where
"(\<chi>\<chi> i. f i) = (\<Sum>i<DIM('a). f i *\<^sub>R basis i)"
lemma euclidean_lambda_beta [simp]:
"((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ j = (if j < DIM('a) then f j else 0)"
by (auto simp: Chi_def if_distrib setsum_cases intro!: setsum_cong)
lemma euclidean_lambda_beta':
"j < DIM('a) \<Longrightarrow> ((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ j = f j"
by simp
lemma euclidean_lambda_beta'':"(\<forall>j < DIM('a::euclidean_space). P j (((\<chi>\<chi> i. f i)::'a) $$ j)) \<longleftrightarrow>
(\<forall>j < DIM('a::euclidean_space). P j (f j))" by auto
lemma euclidean_beta_reduce[simp]:
"(\<chi>\<chi> i. x $$ i) = (x::'a::euclidean_space)"
by (simp add: euclidean_eq)
lemma euclidean_lambda_beta_0[simp]:
"((\<chi>\<chi> i. f i)::'a::euclidean_space) $$ 0 = f 0"
by (simp add: DIM_positive)
lemma euclidean_inner:
"inner x (y::'a) = (\<Sum>i<DIM('a::euclidean_space). (x $$ i) * (y $$ i))"
by (subst (1 2) euclidean_representation,
simp add: inner_setsum_left inner_setsum_right
dot_basis if_distrib setsum_cases mult_commute)
lemma euclidean_dist_l2:
fixes x y :: "'a::euclidean_space"
shows "dist x y = setL2 (\<lambda>i. dist (x $$ i) (y $$ i)) {..<DIM('a)}"
unfolding dist_norm norm_eq_sqrt_inner setL2_def
by (simp add: euclidean_inner power2_eq_square)
lemma component_le_norm: "\<bar>x$$i\<bar> \<le> norm (x::'a::euclidean_space)"
unfolding euclidean_component_def
by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp
lemma dist_nth_le: "dist (x $$ i) (y $$ i) \<le> dist x (y::'a::euclidean_space)"
unfolding euclidean_dist_l2 [where 'a='a]
by (cases "i < DIM('a)", rule member_le_setL2, auto)
subsection {* Subclass relationships *}
instance euclidean_space \<subseteq> perfect_space
proof
fix x :: 'a show "\<not> open {x}"
proof
assume "open {x}"
then obtain e where "0 < e" and e: "\<forall>y. dist y x < e \<longrightarrow> y = x"
unfolding open_dist by fast
def y \<equiv> "x + scaleR (e/2) (sgn (basis 0))"
from `0 < e` have "y \<noteq> x"
unfolding y_def by (simp add: sgn_zero_iff DIM_positive)
from `0 < e` have "dist y x < e"
unfolding y_def by (simp add: dist_norm norm_sgn)
from `y \<noteq> x` and `dist y x < e` show "False"
using e by simp
qed
qed
subsection {* Class instances *}
subsubsection {* Type @{typ real} *}
instantiation real :: euclidean_space
begin
definition
"Basis = {1::real}"
definition
"dimension (t::real itself) = 1"
definition [simp]:
"basis i = (if i = 0 then 1 else (0::real))"
lemma DIM_real [simp]: "DIM(real) = 1"
by (rule dimension_real_def)
instance
by default (auto simp add: Basis_real_def)
end
subsubsection {* Type @{typ complex} *}
instantiation complex :: euclidean_space
begin
definition Basis_complex_def:
"Basis = {1, ii}"
definition
"dimension (t::complex itself) = 2"
definition
"basis i = (if i = 0 then 1 else if i = 1 then ii else 0)"
instance
by default (auto simp add: Basis_complex_def dimension_complex_def
basis_complex_def intro: complex_eqI split: split_if_asm)
end
lemma DIM_complex[simp]: "DIM(complex) = 2"
by (rule dimension_complex_def)
subsubsection {* Type @{typ "'a \<times> 'b"} *}
instantiation prod :: (euclidean_space, euclidean_space) euclidean_space
begin
definition
"Basis = (\<lambda>u. (u, 0)) ` Basis \<union> (\<lambda>v. (0, v)) ` Basis"
definition
"dimension (t::('a \<times> 'b) itself) = DIM('a) + DIM('b)"
definition
"basis i = (if i < DIM('a) then (basis i, 0) else (0, basis (i - DIM('a))))"
instance proof
show "(Basis :: ('a \<times> 'b) set) \<noteq> {}"
unfolding Basis_prod_def by simp
next
show "finite (Basis :: ('a \<times> 'b) set)"
unfolding Basis_prod_def by simp
next
fix u v :: "'a \<times> 'b"
assume "u \<in> Basis" and "v \<in> Basis"
thus "inner u v = (if u = v then 1 else 0)"
unfolding Basis_prod_def inner_prod_def
by (auto simp add: inner_Basis split: split_if_asm)
next
fix x :: "'a \<times> 'b"
show "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> x = 0"
unfolding Basis_prod_def ball_Un ball_simps
by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff)
next
show "DIM('a \<times> 'b) = card (Basis :: ('a \<times> 'b) set)"
unfolding dimension_prod_def Basis_prod_def
by (simp add: card_Un_disjoint disjoint_iff_not_equal
card_image inj_on_def dimension_def)
next
show "basis ` {..<DIM('a \<times> 'b)} = (Basis :: ('a \<times> 'b) set)"
by (auto simp add: Basis_prod_def dimension_prod_def basis_prod_def
image_def elim!: Basis_elim)
next
show "basis ` {DIM('a \<times> 'b)..} = {0::('a \<times> 'b)}"
by (auto simp add: dimension_prod_def basis_prod_def prod_eq_iff image_def)
qed
end
end