(* Title: HOLCF/dnat.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Theory for the domain of natural numbers
*)
Dnat = HOLCF +
types dnat 0
(* ----------------------------------------------------------------------- *)
(* arrity axiom is valuated by semantical reasoning *)
arities dnat::pcpo
consts
(* ----------------------------------------------------------------------- *)
(* essential constants *)
dnat_rep :: " dnat -> (one ++ dnat)"
dnat_abs :: "(one ++ dnat) -> dnat"
(* ----------------------------------------------------------------------- *)
(* abstract constants and auxiliary constants *)
dnat_copy :: "(dnat -> dnat) -> dnat -> dnat"
dzero :: "dnat"
dsucc :: "dnat -> dnat"
dnat_when :: "'b -> (dnat -> 'b) -> dnat -> 'b"
is_dzero :: "dnat -> tr"
is_dsucc :: "dnat -> tr"
dpred :: "dnat -> dnat"
dnat_take :: "nat => dnat -> dnat"
dnat_bisim :: "(dnat => dnat => bool) => bool"
rules
(* ----------------------------------------------------------------------- *)
(* axiomatization of recursive type dnat *)
(* ----------------------------------------------------------------------- *)
(* (dnat,dnat_abs) is the initial F-algebra where *)
(* F is the locally continuous functor determined by domain equation *)
(* X = one ++ X *)
(* ----------------------------------------------------------------------- *)
(* dnat_abs is an isomorphism with inverse dnat_rep *)
(* identity is the least endomorphism on dnat *)
dnat_abs_iso "dnat_rep[dnat_abs[x]] = x"
dnat_rep_iso "dnat_abs[dnat_rep[x]] = x"
dnat_copy_def "dnat_copy == (LAM f. dnat_abs oo \
\ (when[sinl][sinr oo f]) oo dnat_rep )"
dnat_reach "(fix[dnat_copy])[x]=x"
(* ----------------------------------------------------------------------- *)
(* properties of additional constants *)
(* ----------------------------------------------------------------------- *)
(* constructors *)
dzero_def "dzero == dnat_abs[sinl[one]]"
dsucc_def "dsucc == (LAM n. dnat_abs[sinr[n]])"
(* ----------------------------------------------------------------------- *)
(* discriminator functional *)
dnat_when_def "dnat_when == (LAM f1 f2 n.when[LAM x.f1][f2][dnat_rep[n]])"
(* ----------------------------------------------------------------------- *)
(* discriminators and selectors *)
is_dzero_def "is_dzero == dnat_when[TT][LAM x.FF]"
is_dsucc_def "is_dsucc == dnat_when[FF][LAM x.TT]"
dpred_def "dpred == dnat_when[UU][LAM x.x]"
(* ----------------------------------------------------------------------- *)
(* the taker for dnats *)
dnat_take_def "dnat_take == (%n.iterate(n,dnat_copy,UU))"
(* ----------------------------------------------------------------------- *)
(* definition of bisimulation is determined by domain equation *)
(* simplification and rewriting for abstract constants yields def below *)
dnat_bisim_def "dnat_bisim ==\
\(%R.!s1 s2.\
\ R(s1,s2) -->\
\ ((s1=UU & s2=UU) |(s1=dzero & s2=dzero) |\
\ (? s11 s21. s11~=UU & s21~=UU & s1=dsucc[s11] &\
\ s2 = dsucc[s21] & R(s11,s21))))"
end