src/HOL/MicroJava/BV/Kildall.thy
author kleing
Mon, 20 Nov 2000 16:37:42 +0100
changeset 10496 f2d304bdf3cc
child 10592 fc0b575a2cf7
permissions -rw-r--r--
BCV integration (first step)

(*  Title:      HOL/BCV/Kildall.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   2000 TUM

Kildall's algorithm
*)

header "Kildall's Algorithm"

theory Kildall = DFA_Framework:

constdefs
 bounded :: "(nat => nat list) => nat => bool"
"bounded succs n == !p<n. !q:set(succs p). q<n"

 pres_type :: "(nat => 's => 's) => nat => 's set => bool"
"pres_type step n A == !s:A. !p<n. step p s : A"

 mono :: "'s ord => (nat => 's => 's) => nat => 's set => bool"
"mono r step n A ==
 !s p t. s : A & p < n & s <=_r t --> step p s <=_r step p t"

consts
 iter :: "('s sl * (nat => 's => 's) * (nat => nat list))
          * 's list * nat set => 's list"
 propa :: "'s binop => nat list => 's => 's list => nat set => 's list * nat set"

primrec
"propa f []     t ss w = (ss,w)"
"propa f (q#qs) t ss w = (let u = t +_f ss!q;
                              w' = (if u = ss!q then w else insert q w)
                          in propa f qs t (ss[q := u]) w')"

recdef iter
 "same_fst (%((A,r,f),step,succs). semilat(A,r,f) & acc r)
         (%((A,r,f),step,succs).
  {(ss',ss) . ss <[r] ss'} <*lex*> finite_psubset)"
"iter(((A,r,f),step,succs),ss,w) =
  (if semilat(A,r,f) & acc r & (!p:w. p < size ss) &
      bounded succs (size ss) & set ss <= A & pres_type step (size ss) A
   then if w={} then ss
        else let p = SOME p. p : w
             in iter(((A,r,f),step,succs),
                     propa f (succs p) (step p (ss!p)) ss (w-{p}))
   else arbitrary)"

constdefs
 unstables ::
 "'s binop => (nat => 's => 's) => (nat => nat list) => 's list => nat set"
"unstables f step succs ss ==
 {p. p < size ss & (? q:set(succs p). step p (ss!p) +_f ss!q ~= ss!q)}"

 kildall :: "'s sl => (nat => 's => 's) => (nat => nat list)
             => 's list => 's list"
"kildall Arf step succs ss ==
 iter((Arf,step,succs),ss,unstables (snd(snd Arf)) step succs ss)"

consts merges :: "'s binop => 's => nat list => 's list => 's list"
primrec
"merges f s []     ss = ss"
"merges f s (p#ps) ss = merges f s ps (ss[p := s +_f ss!p])"


lemmas [simp] = Let_def le_iff_plus_unchanged [symmetric];


lemma pres_typeD:
  "[| pres_type step n A; s:A; p<n |] ==> step p s : A"
  by (unfold pres_type_def, blast)

lemma boundedD:
  "[| bounded succs n; p < n; q : set(succs p) |] ==> q < n"
  by (unfold bounded_def, blast)

lemma monoD:
  "[| mono r step n A; p < n; s:A; s <=_r t |] ==> step p s <=_r step p t"
  by (unfold mono_def, blast)

(** merges **)

lemma length_merges [rule_format, simp]:
  "!ss. size(merges f t ps ss) = size ss"
  by (induct_tac ps, auto)

lemma merges_preserves_type [rule_format, simp]:
  "[| semilat(A,r,f) |] ==> 
     !xs. xs : list n A --> x : A --> (!p : set ps. p<n) 
          --> merges f x ps xs : list n A"
  apply (frule semilatDclosedI)
  apply (unfold closed_def)
  apply (induct_tac ps)
  apply auto
  done

lemma merges_incr [rule_format]:
  "[| semilat(A,r,f) |] ==> 
     !xs. xs : list n A --> x : A --> (!p:set ps. p<size xs) --> xs <=[r] merges f x ps xs"
  apply (induct_tac ps)
   apply simp
  apply simp
  apply clarify
  apply (rule order_trans)
    apply simp
   apply (erule list_update_incr)
     apply assumption
    apply simp
   apply simp
  apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
  done

lemma merges_same_conv [rule_format]:
  "[| semilat(A,r,f) |] ==> 
     (!xs. xs : list n A --> x:A --> (!p:set ps. p<size xs) --> 
     (merges f x ps xs = xs) = (!p:set ps. x <=_r xs!p))"
  apply (induct_tac ps)
   apply simp
  apply clarsimp
  apply (rename_tac p ps xs)
  apply (rule iffI)
   apply (rule context_conjI)
    apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs")
     apply (force dest!: le_listD simp add: nth_list_update)
    apply (erule subst, rule merges_incr)
        apply assumption
       apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
     apply assumption
    apply simp
   apply clarify
   apply (rotate_tac -2)
   apply (erule allE)
   apply (erule impE)
    apply assumption
   apply (erule impE)
    apply assumption
   apply (drule bspec)
    apply assumption
   apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
  apply clarify 
  apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
  done


lemma list_update_le_listI [rule_format]:
  "set xs <= A --> set ys <= A --> xs <=[r] ys --> p < size xs -->  
   x <=_r ys!p --> semilat(A,r,f) --> x:A --> 
   xs[p := x +_f xs!p] <=[r] ys"
  apply (unfold Listn.le_def lesub_def semilat_def)
  apply (simp add: list_all2_conv_all_nth nth_list_update)
  done

lemma merges_pres_le_ub:
  "[| semilat(A,r,f); t:A; set ts <= A; set ss <= A; 
     !p. p:set ps --> t <=_r ts!p; 
     !p. p:set ps --> p<size ts; 
     ss <=[r] ts |] 
  ==> merges f t ps ss <=[r] ts"
proof -
  { fix A r f t ts ps
    have
    "!!qs. [| semilat(A,r,f); set ts <= A; t:A; 
       !p. p:set ps --> t <=_r ts!p; 
       !p. p:set ps --> p<size ts |] ==> 
    set qs <= set ps  --> 
    (!ss. set ss <= A --> ss <=[r] ts --> merges f t qs ss <=[r] ts)"
    apply (induct_tac qs)
     apply simp
    apply (simp (no_asm_simp))
    apply clarify
    apply (rotate_tac -2)
    apply simp
    apply (erule allE, erule impE, erule_tac [2] mp)
     apply (simp (no_asm_simp) add: closedD)
    apply (simp add: list_update_le_listI)
    done
  } note this [dest]
  
  case antecedent
  thus ?thesis by blast
qed


lemma nth_merges [rule_format]:
  "[| semilat (A, r, f); t:A; p < n |] ==> !ss. ss : list n A --> 
     (!p:set ps. p<n) --> 
     (merges f t ps ss)!p = (if p : set ps then t +_f ss!p else ss!p)"
  apply (induct_tac "ps")
   apply simp
  apply (simp add: nth_list_update closedD listE_nth_in) 
  done


(** propa **)

lemma decomp_propa [rule_format]:
  "!ss w. (!q:set qs. q < size ss) --> 
   propa f qs t ss w = 
   (merges f t qs ss, {q. q:set qs & t +_f ss!q ~= ss!q} Un w)"
  apply (induct_tac qs)
   apply simp
  apply (simp (no_asm))
  apply clarify
  apply (rule conjI)
   apply (simp add: nth_list_update)
   apply blast
  apply (simp add: nth_list_update)
  apply blast
  done 

(** iter **)

ML_setup {*
let
val thy = the_context ()
val [iter_wf,iter_tc] = RecdefPackage.tcs_of thy "iter";
in
goalw_cterm [] (cterm_of (sign_of thy) (HOLogic.mk_Trueprop iter_wf));
by (REPEAT(rtac wf_same_fstI 1));
by (split_all_tac 1);
by (asm_full_simp_tac (simpset() addsimps [thm "lesssub_def"]) 1);
by (REPEAT(rtac wf_same_fstI 1));
by (rtac wf_lex_prod 1);
 by (rtac wf_finite_psubset 2);
by (Clarify_tac 1);
by (dtac (thm "semilatDorderI" RS (thm "acc_le_listI")) 1);
 by (assume_tac 1);
by (rewrite_goals_tac [thm "acc_def",thm "lesssub_def"]);
by (assume_tac 1);
qed "iter_wf"
end
*}

lemma inter_tc_lemma:  
  "[| semilat(A,r,f); ss : list n A; t:A; ! q:set qs. q < n; p:w |] ==> 
      ss <[r] merges f t qs ss | 
  merges f t qs ss = ss & {q. q:set qs & t +_f ss!q ~= ss!q} Un (w-{p}) < w"
  apply (unfold lesssub_def)
  apply (simp (no_asm_simp) add: merges_incr)
  apply (rule impI)
  apply (rule merges_same_conv [THEN iffD1, elim_format]) 
  apply assumption+
    defer
    apply (rule sym, assumption)
   apply (simp cong add: conj_cong add: le_iff_plus_unchanged [symmetric])
   apply (blast intro!: psubsetI elim: equalityE)
  apply simp
  done

ML_setup {*
let
val thy = the_context ()
val [iter_wf,iter_tc] = RecdefPackage.tcs_of thy "iter";
in
goalw_cterm [] (cterm_of (sign_of thy) (HOLogic.mk_Trueprop iter_tc)); 
by (asm_simp_tac (simpset() addsimps [same_fst_def,thm "pres_type_def"]) 1);
by (clarify_tac (claset() delrules [disjCI]) 1);
by (subgoal_tac "(@p. p:w) : w" 1);
 by (fast_tac (claset() addIs [someI]) 2);
by (subgoal_tac "ss : list (size ss) A" 1);
 by (blast_tac (claset() addSIs [thm "listI"]) 2);
by (subgoal_tac "!q:set(succs (@ p. p : w)). q < size ss" 1);
 by (blast_tac (claset() addDs [thm "boundedD"]) 2);
by (rotate_tac 1 1);
by (asm_full_simp_tac (simpset() delsimps [thm "listE_length"]
      addsimps [thm "decomp_propa",finite_psubset_def,thm "inter_tc_lemma",
                bounded_nat_set_is_finite]) 1);
qed "iter_tc"
end
*}


lemma iter_induct:
  "(!!A r f step succs ss w. 
    (!p. p = (@ p. p : w) & w ~= {} & semilat(A,r,f) & acc r & 
      (!p:w. p < length ss) & bounded succs (length ss) & 
         set ss <= A & pres_type step (length ss) A 
         --> P A r f step succs (merges f (step p (ss!p)) (succs p) ss) 
             ({q. q:set(succs p) & step p (ss!p) +_f ss!q ~= ss!q} Un (w-{p})))
  ==> P A r f step succs ss w) ==> P A r f step succs ss w"
proof -
  case antecedent
  show ?thesis
    apply (rule_tac P = P in iter_tc [THEN iter_wf [THEN iter.induct]])
    apply (rule antecedent)
    apply clarify
    apply simp
    apply (subgoal_tac "!q:set(succs (@ p. p : w)). q < size ss")
     apply (rotate_tac -1)
     apply (simp add: decomp_propa)
    apply (subgoal_tac "(@p. p:w) : w")
     apply (blast dest: boundedD)
    apply (fast intro: someI)
    done
qed

lemma iter_unfold:
 "[| semilat(A,r,f); acc r; set ss <= A; pres_type step (length ss) A; 
    bounded succs (size ss); !p:w. p<size ss |] ==> 
 iter(((A,r,f),step,succs),ss,w) = 
 (if w={} then ss 
  else let p = SOME p. p : w 
       in iter(((A,r,f),step,succs),merges f (step p (ss!p)) (succs p) ss, 
        {q. q:set(succs p) & step p (ss!p) +_f ss!q ~= ss!q} Un (w-{p})))"
  apply (rule iter_tc [THEN iter_wf [THEN iter.simps [THEN trans]]])
  apply simp
  apply (rule impI)
  apply (subst decomp_propa)
   apply (subgoal_tac "(@p. p:w) : w")
    apply (blast dest: boundedD)
   apply (fast intro: someI)
  apply simp
  done

lemma stable_pres_lemma:
  "[| semilat (A,r,f); pres_type step n A; bounded succs n; 
     ss : list n A; p : w; ! q:w. q < n; 
     ! q. q < n --> q ~: w --> stable r step succs ss q; q < n; 
     q : set (succs p) --> step p (ss ! p) +_f ss ! q = ss ! q; 
     q ~: w | q = p  |] 
  ==> stable r step succs (merges f (step p (ss!p)) (succs p) ss) q"
  apply (unfold stable_def)
  apply (subgoal_tac "step p (ss!p) : A")
   defer
   apply (blast intro: listE_nth_in pres_typeD)     
  apply simp
  apply clarify
  apply (subst nth_merges)
       apply assumption
      apply assumption
     prefer 2
     apply assumption
    apply (blast dest: boundedD)
   apply (blast dest: boundedD)  
  apply (subst nth_merges)
       apply assumption
      apply assumption
     prefer 2
     apply assumption
    apply (blast dest: boundedD)
   apply (blast dest: boundedD)  
  apply simp
  apply (rule conjI)
   apply clarify
   apply (blast intro!: semilat_ub1 semilat_ub2 listE_nth_in
                intro: order_trans dest: boundedD)
  apply (blast intro!: semilat_ub1 semilat_ub2 listE_nth_in
               intro: order_trans dest: boundedD)
  done

lemma merges_bounded_lemma [rule_format]:
  "[| semilat (A,r,f); mono r step n A; bounded succs n; 
     step p (ss!p) : A; ss : list n A; ts : list n A; p < n; 
     ss <=[r] ts; ! p. p < n --> stable r step succs ts p |] 
  ==> merges f (step p (ss!p)) (succs p) ss <=[r] ts"
  apply (unfold stable_def)
  apply (blast intro!: listE_set monoD listE_nth_in le_listD less_lengthI
               intro: merges_pres_le_ub order_trans
               dest: pres_typeD boundedD)
  done

ML_setup {*
Unify.trace_bound := 80;
Unify.search_bound := 90;
*}

lemma iter_properties [rule_format]:
  "semilat(A,r,f) & acc r & pres_type step n A & mono r step n A & 
  bounded succs n & (! p:w. p < n) & ss:list n A & 
  (!p<n. p~:w --> stable r step succs ss p) 
  --> iter(((A,r,f),step,succs),ss,w) : list n A & 
      stables r step succs (iter(((A,r,f),step,succs),ss,w)) & 
      ss <=[r] iter(((A,r,f),step,succs),ss,w) & 
      (! ts:list n A. 
           ss <=[r] ts & stables r step succs ts --> 
           iter(((A,r,f),step,succs),ss,w) <=[r] ts)"
  apply (unfold stables_def)
  apply (rule_tac A = A and r = r and f = f and step = step and ss = ss and w = w in iter_induct)
  apply clarify
  apply (frule listE_length)
  apply hypsubst
  apply (subst iter_unfold)
        apply assumption
       apply assumption
      apply (simp (no_asm_simp))
     apply assumption
    apply assumption
   apply assumption
  apply (simp (no_asm_simp) del: listE_length)
  apply (rule impI)
  apply (erule allE)
  apply (erule impE)
   apply (simp (no_asm_simp) del: listE_length)   
  apply (subgoal_tac "(@p. p:w) : w")
   prefer 2
   apply (fast intro: someI)
  apply (subgoal_tac "step (@ p. p : w) (ss ! (@ p. p : w)) : A")
   prefer 2
   apply (blast intro: pres_typeD listE_nth_in)
  apply (erule impE)
   apply (simp (no_asm_simp) del: listE_length le_iff_plus_unchanged [symmetric])
   apply (rule conjI)
    apply (blast dest: boundedD)
   apply (rule conjI)
    apply (blast intro: merges_preserves_type dest: boundedD)
   apply clarify
   apply (blast intro!: stable_pres_lemma)
  apply (simp (no_asm_simp) del: listE_length)
  apply (subgoal_tac "!q:set(succs (@ p. p : w)). q < size ss")
   prefer 2
   apply (blast dest: boundedD)
  apply (subgoal_tac "step (@ p. p : w) (ss ! (@ p. p : w)) : A")
   prefer 2
   apply (blast intro: pres_typeD)
  apply (rule conjI)
   apply (blast intro!: merges_incr intro: le_list_trans)
  apply clarify
  apply (drule bspec, assumption, erule mp)
  apply (simp del: listE_length)
  apply (blast intro: merges_bounded_lemma)
  done


lemma is_dfa_kildall:
  "[| semilat(A,r,f); acc r; pres_type step n A; 
     mono r step n A; bounded succs n|] 
  ==> is_dfa r (kildall (A,r,f) step succs) step succs n A"
  apply (unfold is_dfa_def kildall_def)
  apply clarify
  apply simp
  apply (rule iter_properties)
  apply (simp add: unstables_def stable_def)
  apply (blast intro!: le_iff_plus_unchanged [THEN iffD2] listE_nth_in
               dest: boundedD pres_typeD)
  done

lemma is_bcv_kildall:
  "[| semilat(A,r,f); acc r; top r T; 
      pres_type step n A; bounded succs n; 
      mono r step n A |]
  ==> is_bcv r T step succs n A (kildall (A,r,f) step succs)"
  apply (intro is_bcv_dfa is_dfa_kildall semilatDorderI)
  apply assumption+
  done

end