more explicit session dependency, for improved parallel performance of HOL-UNITY test session -- NB: separate 'theories' sections are sequential;
(* Title: HOL/Transcendental.thy Author: Jacques D. Fleuriot, University of Cambridge, University of Edinburgh Author: Lawrence C Paulson*)header{*Power Series, Transcendental Functions etc.*}theory Transcendentalimports Fact Series Deriv NthRootbeginsubsection {* Properties of Power Series *}lemma lemma_realpow_diff: fixes y :: "'a::monoid_mult" shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"proof - assume "p \<le> n" hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le) thus ?thesis by (simp add: power_commutes)qedlemma lemma_realpow_diff_sumr: fixes y :: "'a::{comm_semiring_0,monoid_mult}" shows "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ (Suc n - p)) = y * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"by (simp add: setsum_right_distrib lemma_realpow_diff mult_ac del: setsum_op_ivl_Suc)lemma lemma_realpow_diff_sumr2: fixes y :: "'a::{comm_ring,monoid_mult}" shows "x ^ (Suc n) - y ^ (Suc n) = (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"apply (induct n, simp)apply (simp del: setsum_op_ivl_Suc)apply (subst setsum_op_ivl_Suc)apply (subst lemma_realpow_diff_sumr)apply (simp add: distrib_left del: setsum_op_ivl_Suc)apply (subst mult_left_commute [of "x - y"])apply (erule subst)apply (simp add: algebra_simps)donelemma lemma_realpow_rev_sumr: "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) = (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p))"apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"])apply (rule inj_onI, simp)apply autoapply (rule_tac x="n - x" in image_eqI, simp, simp)donetext{*Power series has a `circle` of convergence, i.e. if it sums for @{termx}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}lemma powser_insidea: fixes x z :: "'a::real_normed_field" assumes 1: "summable (\<lambda>n. f n * x ^ n)" assumes 2: "norm z < norm x" shows "summable (\<lambda>n. norm (f n * z ^ n))"proof - from 2 have x_neq_0: "x \<noteq> 0" by clarsimp from 1 have "(\<lambda>n. f n * x ^ n) ----> 0" by (rule summable_LIMSEQ_zero) hence "convergent (\<lambda>n. f n * x ^ n)" by (rule convergentI) hence "Cauchy (\<lambda>n. f n * x ^ n)" by (rule convergent_Cauchy) hence "Bseq (\<lambda>n. f n * x ^ n)" by (rule Cauchy_Bseq) then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K" by (simp add: Bseq_def, safe) have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x ^ n))" proof (intro exI allI impI) fix n::nat assume "0 \<le> n" have "norm (norm (f n * z ^ n)) * norm (x ^ n) = norm (f n * x ^ n) * norm (z ^ n)" by (simp add: norm_mult abs_mult) also have "\<dots> \<le> K * norm (z ^ n)" by (simp only: mult_right_mono 4 norm_ge_zero) also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))" by (simp add: x_neq_0) also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)" by (simp only: mult_assoc) finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x ^ n))" by (simp add: mult_le_cancel_right x_neq_0) qed moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))" proof - from 2 have "norm (norm (z * inverse x)) < 1" using x_neq_0 by (simp add: nonzero_norm_divide divide_inverse [symmetric]) hence "summable (\<lambda>n. norm (z * inverse x) ^ n)" by (rule summable_geometric) hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)" by (rule summable_mult) thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))" using x_neq_0 by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib power_inverse norm_power mult_assoc) qed ultimately show "summable (\<lambda>n. norm (f n * z ^ n))" by (rule summable_comparison_test)qedlemma powser_inside: fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach}" shows "[| summable (%n. f(n) * (x ^ n)); norm z < norm x |] ==> summable (%n. f(n) * (z ^ n))"by (rule powser_insidea [THEN summable_norm_cancel])lemma sum_split_even_odd: fixes f :: "nat \<Rightarrow> real" shows "(\<Sum> i = 0 ..< 2 * n. if even i then f i else g i) = (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1))"proof (induct n) case (Suc n) have "(\<Sum> i = 0 ..< 2 * Suc n. if even i then f i else g i) = (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))" using Suc.hyps unfolding One_nat_def by auto also have "\<dots> = (\<Sum> i = 0 ..< Suc n. f (2 * i)) + (\<Sum> i = 0 ..< Suc n. g (2 * i + 1))" by auto finally show ?case .qed autolemma sums_if': fixes g :: "nat \<Rightarrow> real" assumes "g sums x" shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x" unfolding sums_defproof (rule LIMSEQ_I) fix r :: real assume "0 < r" from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this] obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g { 0..<n } - x) < r)" by blast let ?SUM = "\<lambda> m. \<Sum> i = 0 ..< m. if even i then 0 else g ((i - 1) div 2)" { fix m assume "m \<ge> 2 * no" hence "m div 2 \<ge> no" by auto have sum_eq: "?SUM (2 * (m div 2)) = setsum g { 0 ..< m div 2 }" using sum_split_even_odd by auto hence "(norm (?SUM (2 * (m div 2)) - x) < r)" using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto moreover have "?SUM (2 * (m div 2)) = ?SUM m" proof (cases "even m") case True show ?thesis unfolding even_nat_div_two_times_two[OF True, unfolded numeral_2_eq_2[symmetric]] .. next case False hence "even (Suc m)" by auto from even_nat_div_two_times_two[OF this, unfolded numeral_2_eq_2[symmetric]] odd_nat_plus_one_div_two[OF False, unfolded numeral_2_eq_2[symmetric]] have eq: "Suc (2 * (m div 2)) = m" by auto hence "even (2 * (m div 2))" using `odd m` by auto have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq .. also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto finally show ?thesis by auto qed ultimately have "(norm (?SUM m - x) < r)" by auto } thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blastqedlemma sums_if: fixes g :: "nat \<Rightarrow> real" assumes "g sums x" and "f sums y" shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"proof - let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)" { fix B T E have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)" by (cases B) auto } note if_sum = this have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x" using sums_if'[OF `g sums x`] . { have "?s 0 = 0" by auto have Suc_m1: "\<And> n. Suc n - 1 = n" by auto have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)" by auto have "?s sums y" using sums_if'[OF `f sums y`] . from this[unfolded sums_def, THEN LIMSEQ_Suc] have "(\<lambda> n. if even n then f (n div 2) else 0) sums y" unfolding sums_def setsum_shift_lb_Suc0_0_upt[where f="?s", OF `?s 0 = 0`, symmetric] image_Suc_atLeastLessThan[symmetric] setsum_reindex[OF inj_Suc, unfolded comp_def] even_Suc Suc_m1 if_eq . } from sums_add[OF g_sums this] show ?thesis unfolding if_sum .qedsubsection {* Alternating series test / Leibniz formula *}lemma sums_alternating_upper_lower: fixes a :: "nat \<Rightarrow> real" assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0" shows "\<exists>l. ((\<forall>n. (\<Sum>i=0..<2*n. -1^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i=0..<2*n. -1^i*a i) ----> l) \<and> ((\<forall>n. l \<le> (\<Sum>i=0..<2*n + 1. -1^i*a i)) \<and> (\<lambda> n. \<Sum>i=0..<2*n + 1. -1^i*a i) ----> l)" (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")proof - have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto have "\<forall> n. ?f n \<le> ?f (Suc n)" proof fix n show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto qed moreover have "\<forall> n. ?g (Suc n) \<le> ?g n" proof fix n show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"] unfolding One_nat_def by auto qed moreover have "\<forall> n. ?f n \<le> ?g n" proof fix n show "?f n \<le> ?g n" using fg_diff a_pos unfolding One_nat_def by auto qed moreover have "(\<lambda> n. ?f n - ?g n) ----> 0" unfolding fg_diff proof (rule LIMSEQ_I) fix r :: real assume "0 < r" with `a ----> 0`[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r" by auto hence "\<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto thus "\<exists> N. \<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto qed ultimately show ?thesis by (rule lemma_nest_unique)qedlemma summable_Leibniz': fixes a :: "nat \<Rightarrow> real" assumes a_zero: "a ----> 0" and a_pos: "\<And> n. 0 \<le> a n" and a_monotone: "\<And> n. a (Suc n) \<le> a n" shows summable: "summable (\<lambda> n. (-1)^n * a n)" and "\<And>n. (\<Sum>i=0..<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)" and "(\<lambda>n. \<Sum>i=0..<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)" and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i=0..<2*n+1. (-1)^i*a i)" and "(\<lambda>n. \<Sum>i=0..<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"proof - let "?S n" = "(-1)^n * a n" let "?P n" = "\<Sum>i=0..<n. ?S i" let "?f n" = "?P (2 * n)" let "?g n" = "?P (2 * n + 1)" obtain l :: real where below_l: "\<forall> n. ?f n \<le> l" and "?f ----> l" and above_l: "\<forall> n. l \<le> ?g n" and "?g ----> l" using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast let ?Sa = "\<lambda> m. \<Sum> n = 0..<m. ?S n" have "?Sa ----> l" proof (rule LIMSEQ_I) fix r :: real assume "0 < r" with `?f ----> l`[THEN LIMSEQ_D] obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto from `0 < r` `?g ----> l`[THEN LIMSEQ_D] obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto { fix n :: nat assume "n \<ge> (max (2 * f_no) (2 * g_no))" hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto have "norm (?Sa n - l) < r" proof (cases "even n") case True from even_nat_div_two_times_two[OF this] have n_eq: "2 * (n div 2) = n" unfolding numeral_2_eq_2[symmetric] by auto with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no" by auto from f[OF this] show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost . next case False hence "even (n - 1)" by simp from even_nat_div_two_times_two[OF this] have n_eq: "2 * ((n - 1) div 2) = n - 1" unfolding numeral_2_eq_2[symmetric] by auto hence range_eq: "n - 1 + 1 = n" using odd_pos[OF False] by auto from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no" by auto from g[OF this] show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost range_eq . qed } thus "\<exists> no. \<forall> n \<ge> no. norm (?Sa n - l) < r" by blast qed hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l" unfolding sums_def atLeastLessThanSuc_atLeastAtMost[symmetric] . thus "summable ?S" using summable_def by auto have "l = suminf ?S" using sums_unique[OF sums_l] . { fix n show "suminf ?S \<le> ?g n" unfolding sums_unique[OF sums_l, symmetric] using above_l by auto } { fix n show "?f n \<le> suminf ?S" unfolding sums_unique[OF sums_l, symmetric] using below_l by auto } show "?g ----> suminf ?S" using `?g ----> l` `l = suminf ?S` by auto show "?f ----> suminf ?S" using `?f ----> l` `l = suminf ?S` by autoqedtheorem summable_Leibniz: fixes a :: "nat \<Rightarrow> real" assumes a_zero: "a ----> 0" and "monoseq a" shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable") and "0 < a 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n. -1^i * a i .. \<Sum>i=0..<2*n+1. -1^i * a i})" (is "?pos") and "a 0 < 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n+1. -1^i * a i .. \<Sum>i=0..<2*n. -1^i * a i})" (is "?neg") and "(\<lambda>n. \<Sum>i=0..<2*n. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?f") and "(\<lambda>n. \<Sum>i=0..<2*n+1. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?g")proof - have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g" proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)") case True hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n" by auto { fix n have "a (Suc n) \<le> a n" using ord[where n="Suc n" and m=n] by auto } note leibniz = summable_Leibniz'[OF `a ----> 0` ge0] and mono = this from leibniz[OF mono] show ?thesis using `0 \<le> a 0` by auto next let ?a = "\<lambda> n. - a n" case False with monoseq_le[OF `monoseq a` `a ----> 0`] have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n" by auto { fix n have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n] by auto } note monotone = this note leibniz = summable_Leibniz'[OF _ ge0, of "\<lambda>x. x", OF tendsto_minus[OF `a ----> 0`, unfolded minus_zero] monotone] have "summable (\<lambda> n. (-1)^n * ?a n)" using leibniz(1) by auto then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l" unfolding summable_def by auto from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l" by auto hence ?summable unfolding summable_def by auto moreover have "\<And> a b :: real. \<bar> - a - - b \<bar> = \<bar>a - b\<bar>" unfolding minus_diff_minus by auto from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus] have move_minus: "(\<Sum>n. - (-1 ^ n * a n)) = - (\<Sum>n. -1 ^ n * a n)" by auto have ?pos using `0 \<le> ?a 0` by auto moreover have ?neg using leibniz(2,4) unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le by auto moreover have ?f and ?g using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel] by auto ultimately show ?thesis by auto qed from this[THEN conjunct1] this[THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct2] show ?summable and ?pos and ?neg and ?f and ?g .qedsubsection {* Term-by-Term Differentiability of Power Series *}definition diffs :: "(nat => 'a::ring_1) => nat => 'a" where "diffs c = (%n. of_nat (Suc n) * c(Suc n))"text{*Lemma about distributing negation over it*}lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)"by (simp add: diffs_def)lemma sums_Suc_imp: assumes f: "f 0 = 0" shows "(\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"unfolding sums_defapply (rule LIMSEQ_imp_Suc)apply (subst setsum_shift_lb_Suc0_0_upt [where f=f, OF f, symmetric])apply (simp only: setsum_shift_bounds_Suc_ivl)donelemma diffs_equiv: fixes x :: "'a::{real_normed_vector, ring_1}" shows "summable (%n. (diffs c)(n) * (x ^ n)) ==> (%n. of_nat n * c(n) * (x ^ (n - Suc 0))) sums (\<Sum>n. (diffs c)(n) * (x ^ n))"unfolding diffs_defapply (drule summable_sums)apply (rule sums_Suc_imp, simp_all)donelemma lemma_termdiff1: fixes z :: "'a :: {monoid_mult,comm_ring}" shows "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) = (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"by(auto simp add: algebra_simps power_add [symmetric])lemma sumr_diff_mult_const2: "setsum f {0..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i = 0..<n. f i - r)"by (simp add: setsum_subtractf)lemma lemma_termdiff2: fixes h :: "'a :: {field}" assumes h: "h \<noteq> 0" shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) = h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)apply (simp add: right_diff_distrib diff_divide_distrib h)apply (simp add: mult_assoc [symmetric])apply (cases "n", simp)apply (simp add: lemma_realpow_diff_sumr2 h right_diff_distrib [symmetric] mult_assoc del: power_Suc setsum_op_ivl_Suc of_nat_Suc)apply (subst lemma_realpow_rev_sumr)apply (subst sumr_diff_mult_const2)apply simpapply (simp only: lemma_termdiff1 setsum_right_distrib)apply (rule setsum_cong [OF refl])apply (simp add: diff_minus [symmetric] less_iff_Suc_add)apply (clarify)apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac del: setsum_op_ivl_Suc power_Suc)apply (subst mult_assoc [symmetric], subst power_add [symmetric])apply (simp add: mult_ac)donelemma real_setsum_nat_ivl_bounded2: fixes K :: "'a::linordered_semidom" assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K" assumes K: "0 \<le> K" shows "setsum f {0..<n-k} \<le> of_nat n * K"apply (rule order_trans [OF setsum_mono])apply (rule f, simp)apply (simp add: mult_right_mono K)donelemma lemma_termdiff3: fixes h z :: "'a::{real_normed_field}" assumes 1: "h \<noteq> 0" assumes 2: "norm z \<le> K" assumes 3: "norm (z + h) \<le> K" shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"proof - have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) = norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h" apply (subst lemma_termdiff2 [OF 1]) apply (subst norm_mult) apply (rule mult_commute) done also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h" proof (rule mult_right_mono [OF _ norm_ge_zero]) from norm_ge_zero 2 have K: "0 \<le> K" by (rule order_trans) have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n" apply (erule subst) apply (simp only: norm_mult norm_power power_add) apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K) done show "norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))" apply (intro order_trans [OF norm_setsum] real_setsum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K) apply (rule le_Kn, simp) done qed also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h" by (simp only: mult_assoc) finally show ?thesis .qedlemma lemma_termdiff4: fixes f :: "'a::{real_normed_field} \<Rightarrow> 'b::real_normed_vector" assumes k: "0 < (k::real)" assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h" shows "f -- 0 --> 0"unfolding LIM_eq diff_0_rightproof (safe) let ?h = "of_real (k / 2)::'a" have "?h \<noteq> 0" and "norm ?h < k" using k by simp_all hence "norm (f ?h) \<le> K * norm ?h" by (rule le) hence "0 \<le> K * norm ?h" by (rule order_trans [OF norm_ge_zero]) hence zero_le_K: "0 \<le> K" using k by (simp add: zero_le_mult_iff) fix r::real assume r: "0 < r" show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" proof (cases) assume "K = 0" with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < k \<longrightarrow> norm (f x) < r)" by simp thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" .. next assume K_neq_zero: "K \<noteq> 0" with zero_le_K have K: "0 < K" by simp show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" proof (rule exI, safe) from k r K show "0 < min k (r * inverse K / 2)" by (simp add: mult_pos_pos positive_imp_inverse_positive) next fix x::'a assume x1: "x \<noteq> 0" and x2: "norm x < min k (r * inverse K / 2)" from x2 have x3: "norm x < k" and x4: "norm x < r * inverse K / 2" by simp_all from x1 x3 le have "norm (f x) \<le> K * norm x" by simp also from x4 K have "K * norm x < K * (r * inverse K / 2)" by (rule mult_strict_left_mono) also have "\<dots> = r / 2" using K_neq_zero by simp also have "r / 2 < r" using r by simp finally show "norm (f x) < r" . qed qedqedlemma lemma_termdiff5: fixes g :: "'a::{real_normed_field} \<Rightarrow> nat \<Rightarrow> 'b::banach" assumes k: "0 < (k::real)" assumes f: "summable f" assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h" shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"proof (rule lemma_termdiff4 [OF k]) fix h::'a assume "h \<noteq> 0" and "norm h < k" hence A: "\<forall>n. norm (g h n) \<le> f n * norm h" by (simp add: le) hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h" by simp moreover from f have B: "summable (\<lambda>n. f n * norm h)" by (rule summable_mult2) ultimately have C: "summable (\<lambda>n. norm (g h n))" by (rule summable_comparison_test) hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))" by (rule summable_norm) also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)" by (rule summable_le) also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h" by (rule suminf_mult2 [symmetric]) finally show "norm (suminf (g h)) \<le> suminf f * norm h" .qedtext{* FIXME: Long proofs*}lemma termdiffs_aux: fixes x :: "'a::{real_normed_field,banach}" assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)" assumes 2: "norm x < norm K" shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"proof - from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K" by fast from norm_ge_zero r1 have r: "0 < r" by (rule order_le_less_trans) hence r_neq_0: "r \<noteq> 0" by simp show ?thesis proof (rule lemma_termdiff5) show "0 < r - norm x" using r1 by simp next from r r2 have "norm (of_real r::'a) < norm K" by simp with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))" by (rule powser_insidea) hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)" using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc) hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))" by (rule diffs_equiv [THEN sums_summable]) also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) = (\<lambda>n. diffs (%m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))" apply (rule ext) apply (simp add: diffs_def) apply (case_tac n, simp_all add: r_neq_0) done finally have "summable (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))" by (rule diffs_equiv [THEN sums_summable]) also have "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) = (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" apply (rule ext) apply (case_tac "n", simp) apply (case_tac "nat", simp) apply (simp add: r_neq_0) done finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" . next fix h::'a and n::nat assume h: "h \<noteq> 0" assume "norm h < r - norm x" hence "norm x + norm h < r" by simp with norm_triangle_ineq have xh: "norm (x + h) < r" by (rule order_le_less_trans) show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h" apply (simp only: norm_mult mult_assoc) apply (rule mult_left_mono [OF _ norm_ge_zero]) apply (simp (no_asm) add: mult_assoc [symmetric]) apply (rule lemma_termdiff3) apply (rule h) apply (rule r1 [THEN order_less_imp_le]) apply (rule xh [THEN order_less_imp_le]) done qedqedlemma termdiffs: fixes K x :: "'a::{real_normed_field,banach}" assumes 1: "summable (\<lambda>n. c n * K ^ n)" assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)" assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)" assumes 4: "norm x < norm K" shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"unfolding deriv_defproof (rule LIM_zero_cancel) show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0" proof (rule LIM_equal2) show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq) next fix h :: 'a assume "h \<noteq> 0" assume "norm (h - 0) < norm K - norm x" hence "norm x + norm h < norm K" by simp hence 5: "norm (x + h) < norm K" by (rule norm_triangle_ineq [THEN order_le_less_trans]) have A: "summable (\<lambda>n. c n * x ^ n)" by (rule powser_inside [OF 1 4]) have B: "summable (\<lambda>n. c n * (x + h) ^ n)" by (rule powser_inside [OF 1 5]) have C: "summable (\<lambda>n. diffs c n * x ^ n)" by (rule powser_inside [OF 2 4]) show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h - (\<Sum>n. diffs c n * x ^ n) = (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))" apply (subst sums_unique [OF diffs_equiv [OF C]]) apply (subst suminf_diff [OF B A]) apply (subst suminf_divide [symmetric]) apply (rule summable_diff [OF B A]) apply (subst suminf_diff) apply (rule summable_divide) apply (rule summable_diff [OF B A]) apply (rule sums_summable [OF diffs_equiv [OF C]]) apply (rule arg_cong [where f="suminf"], rule ext) apply (simp add: algebra_simps) done next show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0" by (rule termdiffs_aux [OF 3 4]) qedqedsubsection {* Derivability of power series *}lemma DERIV_series': fixes f :: "real \<Rightarrow> nat \<Rightarrow> real" assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)" and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}" and "summable (f' x0)" and "summable L" and L_def: "\<And> n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar> f x n - f y n \<bar> \<le> L n * \<bar> x - y \<bar>" shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))" unfolding deriv_defproof (rule LIM_I) fix r :: real assume "0 < r" hence "0 < r/3" by auto obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3" using suminf_exist_split[OF `0 < r/3` `summable L`] by auto obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3" using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto let ?N = "Suc (max N_L N_f')" have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto let "?diff i x" = "(f (x0 + x) i - f x0 i) / x" let ?r = "r / (3 * real ?N)" have "0 < 3 * real ?N" by auto from divide_pos_pos[OF `0 < r` this] have "0 < ?r" . let "?s n" = "SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)" def S' \<equiv> "Min (?s ` { 0 ..< ?N })" have "0 < S'" unfolding S'_def proof (rule iffD2[OF Min_gr_iff]) show "\<forall> x \<in> (?s ` { 0 ..< ?N }). 0 < x" proof (rule ballI) fix x assume "x \<in> ?s ` {0..<?N}" then obtain n where "x = ?s n" and "n \<in> {0..<?N}" using image_iff[THEN iffD1] by blast from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def] obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)" by auto have "0 < ?s n" by (rule someI2[where a=s], auto simp add: s_bound) thus "0 < x" unfolding `x = ?s n` . qed qed auto def S \<equiv> "min (min (x0 - a) (b - x0)) S'" hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0" and "S \<le> S'" using x0_in_I and `0 < S'` by auto { fix x assume "x \<noteq> 0" and "\<bar> x \<bar> < S" hence x_in_I: "x0 + x \<in> { a <..< b }" using S_a S_b by auto note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] note div_smbl = summable_divide[OF diff_smbl] note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`] note ign = summable_ignore_initial_segment[where k="?N"] note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]] note div_shft_smbl = summable_divide[OF diff_shft_smbl] note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]] { fix n have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>" using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero] unfolding abs_divide . hence "\<bar> ( \<bar> ?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)" using `x \<noteq> 0` by auto } note L_ge = summable_le2[OF allI[OF this] ign[OF `summable L`]] from order_trans[OF summable_rabs[OF conjunct1[OF L_ge]] L_ge[THEN conjunct2]] have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))" . hence "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3") using L_estimate by auto have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n \<in> { 0 ..< ?N}. \<bar>?diff n x - f' x0 n \<bar>)" .. also have "\<dots> < (\<Sum>n \<in> { 0 ..< ?N}. ?r)" proof (rule setsum_strict_mono) fix n assume "n \<in> { 0 ..< ?N}" have "\<bar> x \<bar> < S" using `\<bar> x \<bar> < S` . also have "S \<le> S'" using `S \<le> S'` . also have "S' \<le> ?s n" unfolding S'_def proof (rule Min_le_iff[THEN iffD2]) have "?s n \<in> (?s ` {0..<?N}) \<and> ?s n \<le> ?s n" using `n \<in> { 0 ..< ?N}` by auto thus "\<exists> a \<in> (?s ` {0..<?N}). a \<le> ?s n" by blast qed auto finally have "\<bar> x \<bar> < ?s n" . from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2] have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" . with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n` show "\<bar>?diff n x - f' x0 n\<bar> < ?r" by blast qed auto also have "\<dots> = of_nat (card {0 ..< ?N}) * ?r" by (rule setsum_constant) also have "\<dots> = real ?N * ?r" unfolding real_eq_of_nat by auto also have "\<dots> = r/3" by auto finally have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") . from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> = \<bar> \<Sum>n. ?diff n x - f' x0 n \<bar>" unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric] using suminf_divide[OF diff_smbl, symmetric] by auto also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>" unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"] unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]] by (rule abs_triangle_ineq) also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part" using abs_triangle_ineq4 by auto also have "\<dots> < r /3 + r/3 + r/3" using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3` by (rule add_strict_mono [OF add_less_le_mono]) finally have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> < r" by auto } thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow> norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r" using `0 < S` unfolding real_norm_def diff_0_right by blastqedlemma DERIV_power_series': fixes f :: "nat \<Rightarrow> real" assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)" and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R" shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)" (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))")proof - { fix R' assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}" by auto have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))" proof (rule DERIV_series') show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)" proof - have "(R' + R) / 2 < R" and "0 < (R' + R) / 2" using `0 < R'` `0 < R` `R' < R` by auto hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}" using `R' < R` by auto have "norm R' < norm ((R' + R) / 2)" using `0 < R'` `0 < R` `R' < R` by auto from powser_insidea[OF converges[OF in_Rball] this] show ?thesis by auto qed { fix n x y assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}" show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>" proof - have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> = (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar>" unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult by auto also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)" proof (rule mult_left_mono) have "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p = 0..<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)" by (rule setsum_abs) also have "\<dots> \<le> (\<Sum>p = 0..<Suc n. R' ^ n)" proof (rule setsum_mono) fix p assume "p \<in> {0..<Suc n}" hence "p \<le> n" by auto { fix n fix x :: real assume "x \<in> {-R'<..<R'}" hence "\<bar>x\<bar> \<le> R'" by auto hence "\<bar>x^n\<bar> \<le> R'^n" unfolding power_abs by (rule power_mono, auto) } from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'` have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)" unfolding abs_mult by auto thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n" unfolding power_add[symmetric] using `p \<le> n` by auto qed also have "\<dots> = real (Suc n) * R' ^ n" unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto finally show "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>" unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] . show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult[symmetric] by auto qed also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult mult_assoc[symmetric] by algebra finally show ?thesis . qed } { fix n show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)" by (auto intro!: DERIV_intros simp del: power_Suc) } { fix x assume "x \<in> {-R' <..< R'}" hence "R' \<in> {-R <..< R}" and "norm x < norm R'" using assms `R' < R` by auto have "summable (\<lambda> n. f n * x^n)" proof (rule summable_le2[THEN conjunct1, OF _ powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`]], rule allI) fix n have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)" by (rule mult_left_mono, auto) show "\<bar>f n * x ^ n\<bar> \<le> norm (f n * real (Suc n) * x ^ n)" unfolding real_norm_def abs_mult by (rule mult_right_mono, auto simp add: le[unfolded mult_1_right]) qed from this[THEN summable_mult2[where c=x], unfolded mult_assoc, unfolded mult_commute] show "summable (?f x)" by auto } show "summable (?f' x0)" using converges[OF `x0 \<in> {-R <..< R}`] . show "x0 \<in> {-R' <..< R'}" using `x0 \<in> {-R' <..< R'}` . qed } note for_subinterval = this let ?R = "(R + \<bar>x0\<bar>) / 2" have "\<bar>x0\<bar> < ?R" using assms by auto hence "- ?R < x0" proof (cases "x0 < 0") case True hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto next case False have "- ?R < 0" using assms by auto also have "\<dots> \<le> x0" using False by auto finally show ?thesis . qed hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R" using assms by auto from for_subinterval[OF this] show ?thesis .qedsubsection {* Exponential Function *}definition exp :: "'a \<Rightarrow> 'a::{real_normed_field,banach}" where "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"lemma summable_exp_generic: fixes x :: "'a::{real_normed_algebra_1,banach}" defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)" shows "summable S"proof - have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)" unfolding S_def by (simp del: mult_Suc) obtain r :: real where r0: "0 < r" and r1: "r < 1" using dense [OF zero_less_one] by fast obtain N :: nat where N: "norm x < real N * r" using reals_Archimedean3 [OF r0] by fast from r1 show ?thesis proof (rule ratio_test [rule_format]) fix n :: nat assume n: "N \<le> n" have "norm x \<le> real N * r" using N by (rule order_less_imp_le) also have "real N * r \<le> real (Suc n) * r" using r0 n by (simp add: mult_right_mono) finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)" using norm_ge_zero by (rule mult_right_mono) hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)" by (rule order_trans [OF norm_mult_ineq]) hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)" by (simp add: pos_divide_le_eq mult_ac) thus "norm (S (Suc n)) \<le> r * norm (S n)" by (simp add: S_Suc inverse_eq_divide) qedqedlemma summable_norm_exp: fixes x :: "'a::{real_normed_algebra_1,banach}" shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"proof (rule summable_norm_comparison_test [OF exI, rule_format]) show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))" by (rule summable_exp_generic)next fix n show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)" by (simp add: norm_power_ineq)qedlemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)"by (insert summable_exp_generic [where x=x], simp)lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])lemma exp_fdiffs: "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))"by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult del: mult_Suc of_nat_Suc)lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"by (simp add: diffs_def)lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"unfolding exp_def scaleR_conv_of_realapply (rule DERIV_cong)apply (rule termdiffs [where K="of_real (1 + norm x)"])apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+apply (simp del: of_real_add)donelemma isCont_exp: "isCont exp x" by (rule DERIV_exp [THEN DERIV_isCont])lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a" by (rule isCont_o2 [OF _ isCont_exp])lemma tendsto_exp [tendsto_intros]: "(f ---> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) ---> exp a) F" by (rule isCont_tendsto_compose [OF isCont_exp])subsubsection {* Properties of the Exponential Function *}lemma powser_zero: fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1}" shows "(\<Sum>n. f n * 0 ^ n) = f 0"proof - have "(\<Sum>n = 0..<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)" by (rule sums_unique [OF series_zero], simp add: power_0_left) thus ?thesis unfolding One_nat_def by simpqedlemma exp_zero [simp]: "exp 0 = 1"unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)lemma setsum_cl_ivl_Suc2: "(\<Sum>i=m..Suc n. f i) = (if Suc n < m then 0 else f m + (\<Sum>i=m..n. f (Suc i)))"by (simp add: setsum_head_Suc setsum_shift_bounds_cl_Suc_ivl del: setsum_cl_ivl_Suc)lemma exp_series_add: fixes x y :: "'a::{real_field}" defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)" shows "S (x + y) n = (\<Sum>i=0..n. S x i * S y (n - i))"proof (induct n) case 0 show ?case unfolding S_def by simpnext case (Suc n) have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)" unfolding S_def by (simp del: mult_Suc) hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)" by simp have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n" by (simp only: times_S) also have "\<dots> = (x + y) * (\<Sum>i=0..n. S x i * S y (n-i))" by (simp only: Suc) also have "\<dots> = x * (\<Sum>i=0..n. S x i * S y (n-i)) + y * (\<Sum>i=0..n. S x i * S y (n-i))" by (rule distrib_right) also have "\<dots> = (\<Sum>i=0..n. (x * S x i) * S y (n-i)) + (\<Sum>i=0..n. S x i * (y * S y (n-i)))" by (simp only: setsum_right_distrib mult_ac) also have "\<dots> = (\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) + (\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" by (simp add: times_S Suc_diff_le) also have "(\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) = (\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))" by (subst setsum_cl_ivl_Suc2, simp) also have "(\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" by (subst setsum_cl_ivl_Suc, simp) also have "(\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) + (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = (\<Sum>i=0..Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))" by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric] real_of_nat_add [symmetric], simp) also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i=0..Suc n. S x i * S y (Suc n-i))" by (simp only: scaleR_right.setsum) finally show "S (x + y) (Suc n) = (\<Sum>i=0..Suc n. S x i * S y (Suc n - i))" by (simp del: setsum_cl_ivl_Suc)qedlemma exp_add: "exp (x + y) = exp x * exp y"unfolding exp_defby (simp only: Cauchy_product summable_norm_exp exp_series_add)lemma mult_exp_exp: "exp x * exp y = exp (x + y)"by (rule exp_add [symmetric])lemma exp_of_real: "exp (of_real x) = of_real (exp x)"unfolding exp_defapply (subst suminf_of_real)apply (rule summable_exp_generic)apply (simp add: scaleR_conv_of_real)donelemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"proof have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp) also assume "exp x = 0" finally show "False" by simpqedlemma exp_minus: "exp (- x) = inverse (exp x)"by (rule inverse_unique [symmetric], simp add: mult_exp_exp)lemma exp_diff: "exp (x - y) = exp x / exp y" unfolding diff_minus divide_inverse by (simp add: exp_add exp_minus)subsubsection {* Properties of the Exponential Function on Reals *}text {* Comparisons of @{term "exp x"} with zero. *}text{*Proof: because every exponential can be seen as a square.*}lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"proof - have "0 \<le> exp (x/2) * exp (x/2)" by simp thus ?thesis by (simp add: exp_add [symmetric])qedlemma exp_gt_zero [simp]: "0 < exp (x::real)"by (simp add: order_less_le)lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"by (simp add: not_less)lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"by (simp add: not_le)lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"by simplemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"apply (induct "n")apply (auto simp add: real_of_nat_Suc distrib_left exp_add mult_commute)donetext {* Strict monotonicity of exponential. *}lemma exp_ge_add_one_self_aux: "0 \<le> (x::real) ==> (1 + x) \<le> exp(x)"apply (drule order_le_imp_less_or_eq, auto)apply (simp add: exp_def)apply (rule order_trans)apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le)apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_mult_iff)donelemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"proof - assume x: "0 < x" hence "1 < 1 + x" by simp also from x have "1 + x \<le> exp x" by (simp add: exp_ge_add_one_self_aux) finally show ?thesis .qedlemma exp_less_mono: fixes x y :: real assumes "x < y" shows "exp x < exp y"proof - from `x < y` have "0 < y - x" by simp hence "1 < exp (y - x)" by (rule exp_gt_one) hence "1 < exp y / exp x" by (simp only: exp_diff) thus "exp x < exp y" by simpqedlemma exp_less_cancel: "exp (x::real) < exp y ==> x < y"apply (simp add: linorder_not_le [symmetric])apply (auto simp add: order_le_less exp_less_mono)donelemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"by (auto intro: exp_less_mono exp_less_cancel)lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"by (auto simp add: linorder_not_less [symmetric])lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"by (simp add: order_eq_iff)text {* Comparisons of @{term "exp x"} with one. *}lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x" using exp_less_cancel_iff [where x=0 and y=x] by simplemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0" using exp_less_cancel_iff [where x=x and y=0] by simplemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x" using exp_le_cancel_iff [where x=0 and y=x] by simplemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0" using exp_le_cancel_iff [where x=x and y=0] by simplemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0" using exp_inj_iff [where x=x and y=0] by simplemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"proof (rule IVT) assume "1 \<le> y" hence "0 \<le> y - 1" by simp hence "1 + (y - 1) \<le> exp (y - 1)" by (rule exp_ge_add_one_self_aux) thus "y \<le> exp (y - 1)" by simpqed (simp_all add: le_diff_eq)lemma exp_total: "0 < (y::real) ==> \<exists>x. exp x = y"proof (rule linorder_le_cases [of 1 y]) assume "1 \<le> y" thus "\<exists>x. exp x = y" by (fast dest: lemma_exp_total)next assume "0 < y" and "y \<le> 1" hence "1 \<le> inverse y" by (simp add: one_le_inverse_iff) then obtain x where "exp x = inverse y" by (fast dest: lemma_exp_total) hence "exp (- x) = y" by (simp add: exp_minus) thus "\<exists>x. exp x = y" ..qedsubsection {* Natural Logarithm *}definition ln :: "real \<Rightarrow> real" where "ln x = (THE u. exp u = x)"lemma ln_exp [simp]: "ln (exp x) = x" by (simp add: ln_def)lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x" by (auto dest: exp_total)lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x" by (metis exp_gt_zero exp_ln)lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y" by (erule subst, rule ln_exp)lemma ln_one [simp]: "ln 1 = 0" by (rule ln_unique, simp)lemma ln_mult: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x * y) = ln x + ln y" by (rule ln_unique, simp add: exp_add)lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x" by (rule ln_unique, simp add: exp_minus)lemma ln_div: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x / y) = ln x - ln y" by (rule ln_unique, simp add: exp_diff)lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x" by (rule ln_unique, simp add: exp_real_of_nat_mult)lemma ln_less_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y" by (subst exp_less_cancel_iff [symmetric], simp)lemma ln_le_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y" by (simp add: linorder_not_less [symmetric])lemma ln_inj_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y" by (simp add: order_eq_iff)lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x" apply (rule exp_le_cancel_iff [THEN iffD1]) apply (simp add: exp_ge_add_one_self_aux) donelemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x" by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_alllemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x" using ln_le_cancel_iff [of 1 x] by simplemma ln_ge_zero_imp_ge_one: "\<lbrakk>0 \<le> ln x; 0 < x\<rbrakk> \<Longrightarrow> 1 \<le> x" using ln_le_cancel_iff [of 1 x] by simplemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> (0 \<le> ln x) = (1 \<le> x)" using ln_le_cancel_iff [of 1 x] by simplemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> (ln x < 0) = (x < 1)" using ln_less_cancel_iff [of x 1] by simplemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x" using ln_less_cancel_iff [of 1 x] by simplemma ln_gt_zero_imp_gt_one: "\<lbrakk>0 < ln x; 0 < x\<rbrakk> \<Longrightarrow> 1 < x" using ln_less_cancel_iff [of 1 x] by simplemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> (0 < ln x) = (1 < x)" using ln_less_cancel_iff [of 1 x] by simplemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> (ln x = 0) = (x = 1)" using ln_inj_iff [of x 1] by simplemma ln_less_zero: "\<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> ln x < 0" by simplemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x" apply (subgoal_tac "isCont ln (exp (ln x))", simp) apply (rule isCont_inverse_function [where f=exp], simp_all) donelemma tendsto_ln [tendsto_intros]: "\<lbrakk>(f ---> a) F; 0 < a\<rbrakk> \<Longrightarrow> ((\<lambda>x. ln (f x)) ---> ln a) F" by (rule isCont_tendsto_compose [OF isCont_ln])lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x" apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"]) apply (erule DERIV_cong [OF DERIV_exp exp_ln]) apply (simp_all add: abs_if isCont_ln) donelemma DERIV_ln_divide: "0 < x ==> DERIV ln x :> 1 / x" by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)lemma ln_series: assumes "0 < x" and "x < 2" shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))" (is "ln x = suminf (?f (x - 1))")proof - let "?f' x n" = "(-1)^n * (x - 1)^n" have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))" proof (rule DERIV_isconst3[where x=x]) fix x :: real assume "x \<in> {0 <..< 2}" hence "0 < x" and "x < 2" by auto have "norm (1 - x) < 1" using `0 < x` and `x < 2` by auto have "1 / x = 1 / (1 - (1 - x))" by auto also have "\<dots> = (\<Sum> n. (1 - x)^n)" using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique) also have "\<dots> = suminf (?f' x)" unfolding power_mult_distrib[symmetric] by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto) finally have "DERIV ln x :> suminf (?f' x)" using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto moreover have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)" proof (rule DERIV_power_series') show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1" using `0 < x` `x < 2` by auto { fix x :: real assume "x \<in> {- 1<..<1}" hence "norm (-x) < 1" by auto show "summable (\<lambda>n. -1 ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)" unfolding One_nat_def by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`]) } qed hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)" unfolding One_nat_def by auto hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)" unfolding DERIV_iff repos . ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))" by (rule DERIV_diff) thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto qed (auto simp add: assms) thus ?thesis by autoqedlemma exp_first_two_terms: "exp x = 1 + x + (\<Sum> n. inverse(fact (n+2)) * (x ^ (n+2)))"proof - have "exp x = suminf (%n. inverse(fact n) * (x ^ n))" by (simp add: exp_def) also from summable_exp have "... = (\<Sum> n::nat = 0 ..< 2. inverse(fact n) * (x ^ n)) + (\<Sum> n. inverse(fact(n+2)) * (x ^ (n+2)))" (is "_ = ?a + _") by (rule suminf_split_initial_segment) also have "?a = 1 + x" by (simp add: numeral_2_eq_2) finally show ?thesis .qedlemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2"proof - assume a: "0 <= x" assume b: "x <= 1" { fix n :: nat have "2 * 2 ^ n \<le> fact (n + 2)" by (induct n, simp, simp) hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))" by (simp only: real_of_nat_le_iff) hence "2 * 2 ^ n \<le> real (fact (n + 2))" by simp hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)" by (rule le_imp_inverse_le) simp hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n" by (simp add: inverse_mult_distrib power_inverse) hence "inverse (fact (n + 2)) * (x^n * x\<twosuperior>) \<le> 1/2 * (1/2)^n * (1 * x\<twosuperior>)" by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b mult_nonneg_nonneg) hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<twosuperior>/2) * ((1/2)^n)" unfolding power_add by (simp add: mult_ac del: fact_Suc) } note aux1 = this have "(\<lambda>n. x\<twosuperior> / 2 * (1 / 2) ^ n) sums (x\<twosuperior> / 2 * (1 / (1 - 1 / 2)))" by (intro sums_mult geometric_sums, simp) hence aux2: "(\<lambda>n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2" by simp have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= x^2" proof - have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= suminf (%n. (x^2/2) * ((1/2)^n))" apply (rule summable_le) apply (rule allI, rule aux1) apply (rule summable_exp [THEN summable_ignore_initial_segment]) by (rule sums_summable, rule aux2) also have "... = x^2" by (rule sums_unique [THEN sym], rule aux2) finally show ?thesis . qed thus ?thesis unfolding exp_first_two_terms by autoqedlemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x"proof - assume a: "0 <= (x::real)" and b: "x < 1" have "(1 - x) * (1 + x + x^2) = (1 - x^3)" by (simp add: algebra_simps power2_eq_square power3_eq_cube) also have "... <= 1" by (auto simp add: a) finally have "(1 - x) * (1 + x + x ^ 2) <= 1" . moreover have c: "0 < 1 + x + x\<twosuperior>" by (simp add: add_pos_nonneg a) ultimately have "1 - x <= 1 / (1 + x + x^2)" by (elim mult_imp_le_div_pos) also have "... <= 1 / exp x" apply (rule divide_left_mono) apply (rule exp_bound, rule a) apply (rule b [THEN less_imp_le]) apply simp apply (rule mult_pos_pos) apply (rule c) apply simp done also have "... = exp (-x)" by (auto simp add: exp_minus divide_inverse) finally have "1 - x <= exp (- x)" . also have "1 - x = exp (ln (1 - x))" proof - have "0 < 1 - x" by (insert b, auto) thus ?thesis by (auto simp only: exp_ln_iff [THEN sym]) qed finally have "exp (ln (1 - x)) <= exp (- x)" . thus ?thesis by (auto simp only: exp_le_cancel_iff)qedlemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x" apply (case_tac "0 <= x") apply (erule exp_ge_add_one_self_aux) apply (case_tac "x <= -1") apply (subgoal_tac "1 + x <= 0") apply (erule order_trans) apply simp apply simp apply (subgoal_tac "1 + x = exp(ln (1 + x))") apply (erule ssubst) apply (subst exp_le_cancel_iff) apply (subgoal_tac "ln (1 - (- x)) <= - (- x)") apply simp apply (rule ln_one_minus_pos_upper_bound) apply autodonelemma exp_at_bot: "(exp ---> (0::real)) at_bot" unfolding tendsto_Zfun_iffproof (rule ZfunI, simp add: eventually_at_bot_dense) fix r :: real assume "0 < r" { fix x assume "x < ln r" then have "exp x < exp (ln r)" by simp with `0 < r` have "exp x < r" by simp } then show "\<exists>k. \<forall>n<k. exp n < r" by autoqedlemma exp_at_top: "LIM x at_top. exp x :: real :> at_top" by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g="ln"]) (auto intro: eventually_gt_at_top)lemma ln_at_0: "LIM x at_right 0. ln x :> at_bot" by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"]) (auto simp: eventually_within)lemma ln_at_top: "LIM x at_top. ln x :> at_top" by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g="exp"]) (auto intro: eventually_gt_at_top)lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) ---> (0::real)) at_top"proof (induct k) show "((\<lambda>x. x ^ 0 / exp x) ---> (0::real)) at_top" by (simp add: inverse_eq_divide[symmetric]) (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono at_top_le_at_infinity order_refl)next case (Suc k) show ?case proof (rule lhospital_at_top_at_top) show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top" by eventually_elim (intro DERIV_intros, simp, simp) show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top" by eventually_elim (auto intro!: DERIV_intros) show "eventually (\<lambda>x. exp x \<noteq> 0) at_top" by auto from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"] show "((\<lambda>x. real (Suc k) * x ^ k / exp x) ---> 0) at_top" by simp qed (rule exp_at_top)qedsubsection {* Sine and Cosine *}definition sin_coeff :: "nat \<Rightarrow> real" where "sin_coeff = (\<lambda>n. if even n then 0 else -1 ^ ((n - Suc 0) div 2) / real (fact n))"definition cos_coeff :: "nat \<Rightarrow> real" where "cos_coeff = (\<lambda>n. if even n then (-1 ^ (n div 2)) / real (fact n) else 0)"definition sin :: "real \<Rightarrow> real" where "sin = (\<lambda>x. \<Sum>n. sin_coeff n * x ^ n)"definition cos :: "real \<Rightarrow> real" where "cos = (\<lambda>x. \<Sum>n. cos_coeff n * x ^ n)"lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0" unfolding sin_coeff_def by simplemma cos_coeff_0 [simp]: "cos_coeff 0 = 1" unfolding cos_coeff_def by simplemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)" unfolding cos_coeff_def sin_coeff_def by (simp del: mult_Suc)lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)" unfolding cos_coeff_def sin_coeff_def by (simp del: mult_Suc, auto simp add: odd_Suc_mult_two_ex)lemma summable_sin: "summable (\<lambda>n. sin_coeff n * x ^ n)"unfolding sin_coeff_defapply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)donelemma summable_cos: "summable (\<lambda>n. cos_coeff n * x ^ n)"unfolding cos_coeff_defapply (rule summable_comparison_test [OF _ summable_exp [where x="\<bar>x\<bar>"]])apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)donelemma sin_converges: "(\<lambda>n. sin_coeff n * x ^ n) sums sin(x)"unfolding sin_def by (rule summable_sin [THEN summable_sums])lemma cos_converges: "(\<lambda>n. cos_coeff n * x ^ n) sums cos(x)"unfolding cos_def by (rule summable_cos [THEN summable_sums])lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff" by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc)lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)" by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc)text{*Now at last we can get the derivatives of exp, sin and cos*}lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" unfolding sin_def cos_def apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"]) apply (simp_all add: diffs_sin_coeff diffs_cos_coeff summable_minus summable_sin summable_cos) donelemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" unfolding cos_def sin_def apply (rule DERIV_cong, rule termdiffs [where K="1 + \<bar>x\<bar>"]) apply (simp_all add: diffs_sin_coeff diffs_cos_coeff diffs_minus summable_minus summable_sin summable_cos suminf_minus) donelemma isCont_sin: "isCont sin x" by (rule DERIV_sin [THEN DERIV_isCont])lemma isCont_cos: "isCont cos x" by (rule DERIV_cos [THEN DERIV_isCont])lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a" by (rule isCont_o2 [OF _ isCont_sin])lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a" by (rule isCont_o2 [OF _ isCont_cos])lemma tendsto_sin [tendsto_intros]: "(f ---> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) ---> sin a) F" by (rule isCont_tendsto_compose [OF isCont_sin])lemma tendsto_cos [tendsto_intros]: "(f ---> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) ---> cos a) F" by (rule isCont_tendsto_compose [OF isCont_cos])declare DERIV_exp[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] DERIV_ln_divide[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] DERIV_sin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] DERIV_cos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]subsection {* Properties of Sine and Cosine *}lemma sin_zero [simp]: "sin 0 = 0" unfolding sin_def sin_coeff_def by (simp add: powser_zero)lemma cos_zero [simp]: "cos 0 = 1" unfolding cos_def cos_coeff_def by (simp add: powser_zero)lemma sin_cos_squared_add [simp]: "(sin x)\<twosuperior> + (cos x)\<twosuperior> = 1"proof - have "\<forall>x. DERIV (\<lambda>x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0" by (auto intro!: DERIV_intros) hence "(sin x)\<twosuperior> + (cos x)\<twosuperior> = (sin 0)\<twosuperior> + (cos 0)\<twosuperior>" by (rule DERIV_isconst_all) thus "(sin x)\<twosuperior> + (cos x)\<twosuperior> = 1" by simpqedlemma sin_cos_squared_add2 [simp]: "(cos x)\<twosuperior> + (sin x)\<twosuperior> = 1" by (subst add_commute, rule sin_cos_squared_add)lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" using sin_cos_squared_add2 [unfolded power2_eq_square] .lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>" unfolding eq_diff_eq by (rule sin_cos_squared_add)lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>" unfolding eq_diff_eq by (rule sin_cos_squared_add2)lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1" by (rule power2_le_imp_le, simp_all add: sin_squared_eq)lemma sin_ge_minus_one [simp]: "-1 \<le> sin x" using abs_sin_le_one [of x] unfolding abs_le_iff by simplemma sin_le_one [simp]: "sin x \<le> 1" using abs_sin_le_one [of x] unfolding abs_le_iff by simplemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1" by (rule power2_le_imp_le, simp_all add: cos_squared_eq)lemma cos_ge_minus_one [simp]: "-1 \<le> cos x" using abs_cos_le_one [of x] unfolding abs_le_iff by simplemma cos_le_one [simp]: "cos x \<le> 1" using abs_cos_le_one [of x] unfolding abs_le_iff by simplemma DERIV_fun_pow: "DERIV g x :> m ==> DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" by (auto intro!: DERIV_intros)lemma DERIV_fun_exp: "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" by (auto intro!: DERIV_intros)lemma DERIV_fun_sin: "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" by (auto intro!: DERIV_intros)lemma DERIV_fun_cos: "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" by (auto intro!: DERIV_intros)lemma sin_cos_add_lemma: "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0" (is "?f x = 0")proof - have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0" by (auto intro!: DERIV_intros simp add: algebra_simps) hence "?f x = ?f 0" by (rule DERIV_isconst_all) thus ?thesis by simpqedlemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simplemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simplemma sin_cos_minus_lemma: "(sin(-x) + sin(x))\<twosuperior> + (cos(-x) - cos(x))\<twosuperior> = 0" (is "?f x = 0")proof - have "\<forall>x. DERIV (\<lambda>x. ?f x) x :> 0" by (auto intro!: DERIV_intros simp add: algebra_simps) hence "?f x = ?f 0" by (rule DERIV_isconst_all) thus ?thesis by simpqedlemma sin_minus [simp]: "sin (-x) = -sin(x)" using sin_cos_minus_lemma [where x=x] by simplemma cos_minus [simp]: "cos (-x) = cos(x)" using sin_cos_minus_lemma [where x=x] by simplemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" by (simp add: diff_minus sin_add)lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" by (simp add: sin_diff mult_commute)lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" by (simp add: diff_minus cos_add)lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" by (simp add: cos_diff mult_commute)lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" using sin_add [where x=x and y=x] by simplemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)" using cos_add [where x=x and y=x] by (simp add: power2_eq_square)subsection {* The Constant Pi *}definition pi :: "real" where "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; hence define pi.*}lemma sin_paired: "(%n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) sums sin x"proof - have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x" by (rule sin_converges [THEN sums_group], simp) thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: mult_ac)qedlemma sin_gt_zero: assumes "0 < x" and "x < 2" shows "0 < sin x"proof - let ?f = "\<lambda>n. \<Sum>k = n*2..<n*2+2. -1 ^ k / real (fact (2*k+1)) * x^(2*k+1)" have pos: "\<forall>n. 0 < ?f n" proof fix n :: nat let ?k2 = "real (Suc (Suc (4 * n)))" let ?k3 = "real (Suc (Suc (Suc (4 * n))))" have "x * x < ?k2 * ?k3" using assms by (intro mult_strict_mono', simp_all) hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)" by (intro mult_strict_right_mono zero_less_power `0 < x`) thus "0 < ?f n" by (simp del: mult_Suc, simp add: less_divide_eq mult_pos_pos field_simps del: mult_Suc) qed have sums: "?f sums sin x" by (rule sin_paired [THEN sums_group], simp) show "0 < sin x" unfolding sums_unique [OF sums] using sums_summable [OF sums] pos by (rule suminf_gt_zero)qedlemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1"apply (cut_tac x = x in sin_gt_zero)apply (auto simp add: cos_squared_eq cos_double)donelemma cos_paired: "(%n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"proof - have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x" by (rule cos_converges [THEN sums_group], simp) thus ?thesis unfolding cos_coeff_def by (simp add: mult_ac)qedlemma real_mult_inverse_cancel: "[|(0::real) < x; 0 < x1; x1 * y < x * u |] ==> inverse x * y < inverse x1 * u"apply (rule_tac c=x in mult_less_imp_less_left)apply (auto simp add: mult_assoc [symmetric])apply (simp (no_asm) add: mult_ac)apply (rule_tac c=x1 in mult_less_imp_less_right)apply (auto simp add: mult_ac)donelemma real_mult_inverse_cancel2: "[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1"apply (auto dest: real_mult_inverse_cancel simp add: mult_ac)donelemma realpow_num_eq_if: fixes m :: "'a::power" shows "m ^ n = (if n=0 then 1 else m * m ^ (n - 1))"by (cases n, auto)lemma cos_two_less_zero [simp]: "cos (2) < 0"apply (cut_tac x = 2 in cos_paired)apply (drule sums_minus)apply (rule neg_less_iff_less [THEN iffD1])apply (frule sums_unique, auto)apply (rule_tac y = "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))" in order_less_trans)apply (simp (no_asm) add: fact_num_eq_if_nat realpow_num_eq_if del: fact_Suc)apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)apply (rule sumr_pos_lt_pair)apply (erule sums_summable, safe)unfolding One_nat_defapply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] del: fact_Suc)apply (simp add: inverse_eq_divide less_divide_eq del: fact_Suc)apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])apply (simp only: real_of_nat_mult)apply (rule mult_strict_mono, force) apply (rule_tac [3] real_of_nat_ge_zero) prefer 2 apply forceapply (rule real_of_nat_less_iff [THEN iffD2])apply (rule fact_less_mono_nat, auto)donelemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0"proof (rule ex_ex1I) show "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0" by (rule IVT2, simp_all)next fix x y assume x: "0 \<le> x \<and> x \<le> 2 \<and> cos x = 0" assume y: "0 \<le> y \<and> y \<le> 2 \<and> cos y = 0" have [simp]: "\<forall>x. cos differentiable x" unfolding differentiable_def by (auto intro: DERIV_cos) from x y show "x = y" apply (cut_tac less_linear [of x y], auto) apply (drule_tac f = cos in Rolle) apply (drule_tac [5] f = cos in Rolle) apply (auto dest!: DERIV_cos [THEN DERIV_unique]) apply (metis order_less_le_trans less_le sin_gt_zero) apply (metis order_less_le_trans less_le sin_gt_zero) doneqedlemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"by (simp add: pi_def)lemma cos_pi_half [simp]: "cos (pi / 2) = 0"by (simp add: pi_half cos_is_zero [THEN theI'])lemma pi_half_gt_zero [simp]: "0 < pi / 2"apply (rule order_le_neq_trans)apply (simp add: pi_half cos_is_zero [THEN theI'])apply (rule notI, drule arg_cong [where f=cos], simp)donelemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]lemma pi_half_less_two [simp]: "pi / 2 < 2"apply (rule order_le_neq_trans)apply (simp add: pi_half cos_is_zero [THEN theI'])apply (rule notI, drule arg_cong [where f=cos], simp)donelemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]lemmas pi_half_le_two [simp] = pi_half_less_two [THEN order_less_imp_le]lemma pi_gt_zero [simp]: "0 < pi"by (insert pi_half_gt_zero, simp)lemma pi_ge_zero [simp]: "0 \<le> pi"by (rule pi_gt_zero [THEN order_less_imp_le])lemma pi_neq_zero [simp]: "pi \<noteq> 0"by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym])lemma pi_not_less_zero [simp]: "\<not> pi < 0"by (simp add: linorder_not_less)lemma minus_pi_half_less_zero: "-(pi/2) < 0"by simplemma m2pi_less_pi: "- (2 * pi) < pi"by simplemma sin_pi_half [simp]: "sin(pi/2) = 1"apply (cut_tac x = "pi/2" in sin_cos_squared_add2)apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two])apply (simp add: power2_eq_1_iff)donelemma cos_pi [simp]: "cos pi = -1"by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp)lemma sin_pi [simp]: "sin pi = 0"by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp)lemma sin_cos_eq: "sin x = cos (pi/2 - x)"by (simp add: cos_diff)lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"by (simp add: cos_add)lemma cos_sin_eq: "cos x = sin (pi/2 - x)"by (simp add: sin_diff)lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"by (simp add: sin_add)lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"by (simp add: sin_add)lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"by (simp add: cos_add)lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"by (simp add: sin_add cos_double)lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"by (simp add: cos_add cos_double)lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"apply (induct "n")apply (auto simp add: real_of_nat_Suc distrib_right)donelemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"proof - have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute) also have "... = -1 ^ n" by (rule cos_npi) finally show ?thesis .qedlemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"apply (induct "n")apply (auto simp add: real_of_nat_Suc distrib_right)donelemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"by (simp add: mult_commute [of pi])lemma cos_two_pi [simp]: "cos (2 * pi) = 1"by (simp add: cos_double)lemma sin_two_pi [simp]: "sin (2 * pi) = 0"by simplemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"apply (rule sin_gt_zero, assumption)apply (rule order_less_trans, assumption)apply (rule pi_half_less_two)donelemma sin_less_zero: assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0"proof - have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2) thus ?thesis by simpqedlemma pi_less_4: "pi < 4"by (cut_tac pi_half_less_two, auto)lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"apply (cut_tac pi_less_4)apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)apply (cut_tac cos_is_zero, safe)apply (rename_tac y z)apply (drule_tac x = y in spec)apply (drule_tac x = "pi/2" in spec, simp)donelemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"apply (rule_tac x = x and y = 0 in linorder_cases)apply (rule cos_minus [THEN subst])apply (rule cos_gt_zero)apply (auto intro: cos_gt_zero)donelemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"apply (auto simp add: order_le_less cos_gt_zero_pi)apply (subgoal_tac "x = pi/2", auto)donelemma sin_gt_zero_pi: "[| 0 < x; x < pi |] ==> 0 < sin x"by (simp add: sin_cos_eq cos_gt_zero_pi)lemma pi_ge_two: "2 \<le> pi"proof (rule ccontr) assume "\<not> 2 \<le> pi" hence "pi < 2" by auto have "\<exists>y > pi. y < 2 \<and> y < 2 * pi" proof (cases "2 < 2 * pi") case True with dense[OF `pi < 2`] show ?thesis by auto next case False have "pi < 2 * pi" by auto from dense[OF this] and False show ?thesis by auto qed then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast hence "0 < sin y" using sin_gt_zero by auto moreover have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto ultimately show False by autoqedlemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"by (auto simp add: order_le_less sin_gt_zero_pi)text {* FIXME: This proof is almost identical to lemma @{text cos_is_zero}. It should be possible to factor out some of the common parts. *}lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"proof (rule ex_ex1I) assume y: "-1 \<le> y" "y \<le> 1" show "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y" by (rule IVT2, simp_all add: y)next fix a b assume a: "0 \<le> a \<and> a \<le> pi \<and> cos a = y" assume b: "0 \<le> b \<and> b \<le> pi \<and> cos b = y" have [simp]: "\<forall>x. cos differentiable x" unfolding differentiable_def by (auto intro: DERIV_cos) from a b show "a = b" apply (cut_tac less_linear [of a b], auto) apply (drule_tac f = cos in Rolle) apply (drule_tac [5] f = cos in Rolle) apply (auto dest!: DERIV_cos [THEN DERIV_unique]) apply (metis order_less_le_trans less_le sin_gt_zero_pi) apply (metis order_less_le_trans less_le sin_gt_zero_pi) doneqedlemma sin_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"apply (rule ccontr)apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")apply (erule contrapos_np)apply simpapply (cut_tac y="-y" in cos_total, simp) apply simpapply (erule ex1E)apply (rule_tac a = "x - (pi/2)" in ex1I)apply (simp (no_asm) add: add_assoc)apply (rotate_tac 3)apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all add: cos_add)donelemma reals_Archimedean4: "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"apply (auto dest!: reals_Archimedean3)apply (drule_tac x = x in spec, clarify)apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y") prefer 2 apply (erule LeastI)apply (case_tac "LEAST m::nat. x < real m * y", simp)apply (subgoal_tac "~ x < real nat * y") prefer 2 apply (rule not_less_Least, simp, force)done(* Pre Isabelle99-2 proof was simpler- numerals arithmetic now causes some unwanted re-arrangements of literals! *)lemma cos_zero_lemma: "[| 0 \<le> x; cos x = 0 |] ==> \<exists>n::nat. ~even n & x = real n * (pi/2)"apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)apply (subgoal_tac "0 \<le> x - real n * pi & (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")apply (auto simp add: algebra_simps real_of_nat_Suc) prefer 2 apply (simp add: cos_diff)apply (simp add: cos_diff)apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")apply (rule_tac [2] cos_total, safe)apply (drule_tac x = "x - real n * pi" in spec)apply (drule_tac x = "pi/2" in spec)apply (simp add: cos_diff)apply (rule_tac x = "Suc (2 * n)" in exI)apply (simp add: real_of_nat_Suc algebra_simps, auto)donelemma sin_zero_lemma: "[| 0 \<le> x; sin x = 0 |] ==> \<exists>n::nat. even n & x = real n * (pi/2)"apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ") apply (clarify, rule_tac x = "n - 1" in exI) apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right)apply (rule cos_zero_lemma)apply (simp_all add: cos_add)donelemma cos_zero_iff: "(cos x = 0) = ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) | (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"apply (rule iffI)apply (cut_tac linorder_linear [of 0 x], safe)apply (drule cos_zero_lemma, assumption+)apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)apply (force simp add: minus_equation_iff [of x])apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right)apply (auto simp add: cos_add)done(* ditto: but to a lesser extent *)lemma sin_zero_iff: "(sin x = 0) = ((\<exists>n::nat. even n & (x = real n * (pi/2))) | (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"apply (rule iffI)apply (cut_tac linorder_linear [of 0 x], safe)apply (drule sin_zero_lemma, assumption+)apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)apply (force simp add: minus_equation_iff [of x])apply (auto simp add: even_mult_two_ex)donelemma cos_monotone_0_pi: assumes "0 \<le> y" and "y < x" and "x \<le> pi" shows "cos x < cos y"proof - have "- (x - y) < 0" using assms by auto from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]] obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z" by auto hence "0 < z" and "z < pi" using assms by auto hence "0 < sin z" using sin_gt_zero_pi by auto hence "cos x - cos y < 0" unfolding cos_diff minus_mult_commute[symmetric] using `- (x - y) < 0` by (rule mult_pos_neg2) thus ?thesis by autoqedlemma cos_monotone_0_pi': assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi" shows "cos x \<le> cos y"proof (cases "y < x") case True show ?thesis using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by autonext case False hence "y = x" using `y \<le> x` by auto thus ?thesis by autoqedlemma cos_monotone_minus_pi_0: assumes "-pi \<le> y" and "y < x" and "x \<le> 0" shows "cos y < cos x"proof - have "0 \<le> -x" and "-x < -y" and "-y \<le> pi" using assms by auto from cos_monotone_0_pi[OF this] show ?thesis unfolding cos_minus .qedlemma cos_monotone_minus_pi_0': assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0" shows "cos y \<le> cos x"proof (cases "y < x") case True show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`] by autonext case False hence "y = x" using `y \<le> x` by auto thus ?thesis by autoqedlemma sin_monotone_2pi': assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2" shows "sin y \<le> sin x"proof - have "0 \<le> y + pi / 2" and "y + pi / 2 \<le> x + pi / 2" and "x + pi /2 \<le> pi" using pi_ge_two and assms by auto from cos_monotone_0_pi'[OF this] show ?thesis unfolding minus_sin_cos_eq[symmetric] by autoqedsubsection {* Tangent *}definition tan :: "real \<Rightarrow> real" where "tan = (\<lambda>x. sin x / cos x)"lemma tan_zero [simp]: "tan 0 = 0" by (simp add: tan_def)lemma tan_pi [simp]: "tan pi = 0" by (simp add: tan_def)lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0" by (simp add: tan_def)lemma tan_minus [simp]: "tan (-x) = - tan x" by (simp add: tan_def)lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x" by (simp add: tan_def)lemma lemma_tan_add1: "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)" by (simp add: tan_def cos_add field_simps)lemma add_tan_eq: "\<lbrakk>cos x \<noteq> 0; cos y \<noteq> 0\<rbrakk> \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)" by (simp add: tan_def sin_add field_simps)lemma tan_add: "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |] ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))" by (simp add: add_tan_eq lemma_tan_add1, simp add: tan_def)lemma tan_double: "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |] ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))" using tan_add [of x x] by (simp add: power2_eq_square)lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)lemma tan_less_zero: assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0"proof - have "0 < tan (- x)" using assms by (simp only: tan_gt_zero) thus ?thesis by simpqedlemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)" unfolding tan_def sin_double cos_double sin_squared_eq by (simp add: power2_eq_square)lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<twosuperior>)" unfolding tan_def by (auto intro!: DERIV_intros, simp add: divide_inverse power2_eq_square)lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x" by (rule DERIV_tan [THEN DERIV_isCont])lemma isCont_tan' [simp]: "\<lbrakk>isCont f a; cos (f a) \<noteq> 0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a" by (rule isCont_o2 [OF _ isCont_tan])lemma tendsto_tan [tendsto_intros]: "\<lbrakk>(f ---> a) F; cos a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. tan (f x)) ---> tan a) F" by (rule isCont_tendsto_compose [OF isCont_tan])lemma LIM_cos_div_sin: "(%x. cos(x)/sin(x)) -- pi/2 --> 0" by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all)lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"apply (cut_tac LIM_cos_div_sin)apply (simp only: LIM_eq)apply (drule_tac x = "inverse y" in spec, safe, force)apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)apply (rule_tac x = "(pi/2) - e" in exI)apply (simp (no_asm_simp))apply (drule_tac x = "(pi/2) - e" in spec)apply (auto simp add: tan_def sin_diff cos_diff)apply (rule inverse_less_iff_less [THEN iffD1])apply (auto simp add: divide_inverse)apply (rule mult_pos_pos)apply (subgoal_tac [3] "0 < sin e & 0 < cos e")apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute)donelemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"apply (frule order_le_imp_less_or_eq, safe) prefer 2 apply forceapply (drule lemma_tan_total, safe)apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)apply (auto intro!: DERIV_tan [THEN DERIV_isCont])apply (drule_tac y = xa in order_le_imp_less_or_eq)apply (auto dest: cos_gt_zero)donelemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"apply (cut_tac linorder_linear [of 0 y], safe)apply (drule tan_total_pos)apply (cut_tac [2] y="-y" in tan_total_pos, safe)apply (rule_tac [3] x = "-x" in exI)apply (auto del: exI intro!: exI)donelemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"apply (cut_tac y = y in lemma_tan_total1, auto)apply (cut_tac x = xa and y = y in linorder_less_linear, auto)apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")apply (rule_tac [4] Rolle)apply (rule_tac [2] Rolle)apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI simp add: differentiable_def)txt{*Now, simulate TRYALL*}apply (rule_tac [!] DERIV_tan asm_rl)apply (auto dest!: DERIV_unique [OF _ DERIV_tan] simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])donelemma tan_monotone: assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2" shows "tan y < tan x"proof - have "\<forall> x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse (cos x'^2)" proof (rule allI, rule impI) fix x' :: real assume "y \<le> x' \<and> x' \<le> x" hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto from cos_gt_zero_pi[OF this] have "cos x' \<noteq> 0" by auto thus "DERIV tan x' :> inverse (cos x'^2)" by (rule DERIV_tan) qed from MVT2[OF `y < x` this] obtain z where "y < z" and "z < x" and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<twosuperior>)" by auto hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto hence "0 < cos z" using cos_gt_zero_pi by auto hence inv_pos: "0 < inverse ((cos z)\<twosuperior>)" by auto have "0 < x - y" using `y < x` by auto from mult_pos_pos [OF this inv_pos] have "0 < tan x - tan y" unfolding tan_diff by auto thus ?thesis by autoqedlemma tan_monotone': assumes "- (pi / 2) < y" and "y < pi / 2" and "- (pi / 2) < x" and "x < pi / 2" shows "(y < x) = (tan y < tan x)"proof assume "y < x" thus "tan y < tan x" using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by autonext assume "tan y < tan x" show "y < x" proof (rule ccontr) assume "\<not> y < x" hence "x \<le> y" by auto hence "tan x \<le> tan y" proof (cases "x = y") case True thus ?thesis by auto next case False hence "x < y" using `x \<le> y` by auto from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto qed thus False using `tan y < tan x` by auto qedqedlemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)" unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by autolemma tan_periodic_pi[simp]: "tan (x + pi) = tan x" by (simp add: tan_def)lemma tan_periodic_nat[simp]: fixes n :: nat shows "tan (x + real n * pi) = tan x"proof (induct n arbitrary: x) case (Suc n) have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi" unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto show ?case unfolding split_pi_off using Suc by autoqed autolemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x"proof (cases "0 \<le> i") case True hence i_nat: "real i = real (nat i)" by auto show ?thesis unfolding i_nat by autonext case False hence i_nat: "real i = - real (nat (-i))" by auto have "tan x = tan (x + real i * pi - real i * pi)" by auto also have "\<dots> = tan (x + real i * pi)" unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat) finally show ?thesis by autoqedlemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x" using tan_periodic_int[of _ "numeral n" ] unfolding real_numeral .subsection {* Inverse Trigonometric Functions *}definition arcsin :: "real => real" where "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"definition arccos :: "real => real" where "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"definition arctan :: "real => real" where "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"lemma arcsin: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2 & sin(arcsin y) = y"unfolding arcsin_def by (rule theI' [OF sin_total])lemma arcsin_pi: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"apply (drule (1) arcsin)apply (force intro: order_trans)donelemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y"by (blast dest: arcsin)lemma arcsin_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"by (blast dest: arcsin)lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y"by (blast dest: arcsin)lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2"by (blast dest: arcsin)lemma arcsin_lt_bounded: "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"apply (frule order_less_imp_le)apply (frule_tac y = y in order_less_imp_le)apply (frule arcsin_bounded)apply (safe, simp)apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)apply (drule_tac [!] f = sin in arg_cong, auto)donelemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"apply (unfold arcsin_def)apply (rule the1_equality)apply (rule sin_total, auto)donelemma arccos: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"unfolding arccos_def by (rule theI' [OF cos_total])lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"by (blast dest: arccos)lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"by (blast dest: arccos)lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"by (blast dest: arccos)lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"by (blast dest: arccos)lemma arccos_lt_bounded: "[| -1 < y; y < 1 |] ==> 0 < arccos y & arccos y < pi"apply (frule order_less_imp_le)apply (frule_tac y = y in order_less_imp_le)apply (frule arccos_bounded, auto)apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)apply (drule_tac [!] f = cos in arg_cong, auto)donelemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"apply (simp add: arccos_def)apply (auto intro!: the1_equality cos_total)donelemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"apply (simp add: arccos_def)apply (auto intro!: the1_equality cos_total)donelemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)"apply (subgoal_tac "x\<twosuperior> \<le> 1")apply (rule power2_eq_imp_eq)apply (simp add: cos_squared_eq)apply (rule cos_ge_zero)apply (erule (1) arcsin_lbound)apply (erule (1) arcsin_ubound)apply simpapply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)apply (rule power_mono, simp, simp)donelemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)"apply (subgoal_tac "x\<twosuperior> \<le> 1")apply (rule power2_eq_imp_eq)apply (simp add: sin_squared_eq)apply (rule sin_ge_zero)apply (erule (1) arccos_lbound)apply (erule (1) arccos_ubound)apply simpapply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)apply (rule power_mono, simp, simp)donelemma arctan [simp]: "- (pi/2) < arctan y & arctan y < pi/2 & tan (arctan y) = y"unfolding arctan_def by (rule theI' [OF tan_total])lemma tan_arctan: "tan(arctan y) = y"by autolemma arctan_bounded: "- (pi/2) < arctan y & arctan y < pi/2"by (auto simp only: arctan)lemma arctan_lbound: "- (pi/2) < arctan y"by autolemma arctan_ubound: "arctan y < pi/2"by (auto simp only: arctan)lemma arctan_unique: assumes "-(pi/2) < x" and "x < pi/2" and "tan x = y" shows "arctan y = x" using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)lemma arctan_tan: "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x" by (rule arctan_unique, simp_all)lemma arctan_zero_zero [simp]: "arctan 0 = 0" by (rule arctan_unique, simp_all)lemma arctan_minus: "arctan (- x) = - arctan x" apply (rule arctan_unique) apply (simp only: neg_less_iff_less arctan_ubound) apply (metis minus_less_iff arctan_lbound) apply simp donelemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0" by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<twosuperior>)"proof (rule power2_eq_imp_eq) have "0 < 1 + x\<twosuperior>" by (simp add: add_pos_nonneg) show "0 \<le> 1 / sqrt (1 + x\<twosuperior>)" by simp show "0 \<le> cos (arctan x)" by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound) have "(cos (arctan x))\<twosuperior> * (1 + (tan (arctan x))\<twosuperior>) = 1" unfolding tan_def by (simp add: distrib_left power_divide) thus "(cos (arctan x))\<twosuperior> = (1 / sqrt (1 + x\<twosuperior>))\<twosuperior>" using `0 < 1 + x\<twosuperior>` by (simp add: power_divide eq_divide_eq)qedlemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<twosuperior>)" using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]] using tan_arctan [of x] unfolding tan_def cos_arctan by (simp add: eq_divide_eq)lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2"apply (rule power_inverse [THEN subst])apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])apply (auto dest: field_power_not_zero simp add: power_mult_distrib distrib_right power_divide tan_def mult_assoc power_inverse [symmetric])donelemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y" by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y" by (simp only: not_less [symmetric] arctan_less_iff)lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y" by (simp only: eq_iff [where 'a=real] arctan_le_iff)lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x" using arctan_less_iff [of 0 x] by simplemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0" using arctan_less_iff [of x 0] by simplemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x" using arctan_le_iff [of 0 x] by simplemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0" using arctan_le_iff [of x 0] by simplemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0" using arctan_eq_iff [of x 0] by simplemma isCont_inverse_function2: fixes f g :: "real \<Rightarrow> real" shows "\<lbrakk>a < x; x < b; \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z; \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk> \<Longrightarrow> isCont g (f x)"apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])apply (simp_all add: abs_le_iff)donelemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x"apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp)apply (rule isCont_inverse_function2 [where f=sin])apply (erule (1) arcsin_lt_bounded [THEN conjunct1])apply (erule (1) arcsin_lt_bounded [THEN conjunct2])apply (fast intro: arcsin_sin, simp)donelemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x"apply (subgoal_tac "isCont arccos (cos (arccos x))", simp)apply (rule isCont_inverse_function2 [where f=cos])apply (erule (1) arccos_lt_bounded [THEN conjunct1])apply (erule (1) arccos_lt_bounded [THEN conjunct2])apply (fast intro: arccos_cos, simp)donelemma isCont_arctan: "isCont arctan x"apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)apply (erule (1) isCont_inverse_function2 [where f=tan])apply (metis arctan_tan order_le_less_trans order_less_le_trans)apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)donelemma DERIV_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))"apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])apply (rule DERIV_cong [OF DERIV_sin])apply (simp add: cos_arcsin)apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)apply (rule power_strict_mono, simp, simp, simp)apply assumptionapply assumptionapply simpapply (erule (1) isCont_arcsin)donelemma DERIV_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))"apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])apply (rule DERIV_cong [OF DERIV_cos])apply (simp add: sin_arccos)apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)apply (rule power_strict_mono, simp, simp, simp)apply assumptionapply assumptionapply simpapply (erule (1) isCont_arccos)donelemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)"apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])apply (rule DERIV_cong [OF DERIV_tan])apply (rule cos_arctan_not_zero)apply (simp add: power_inverse tan_sec [symmetric])apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp)apply (simp add: add_pos_nonneg)apply (simp, simp, simp, rule isCont_arctan)donedeclare DERIV_arcsin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] DERIV_arccos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] DERIV_arctan[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))" by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan]) (auto simp: le_less eventually_within_less dist_real_def simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"])lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))" by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan]) (auto simp: le_less eventually_within_less dist_real_def simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"])lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top"proof (rule tendstoI) fix e :: real assume "0 < e" def y \<equiv> "pi/2 - min (pi/2) e" then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y" using `0 < e` by auto show "eventually (\<lambda>x. dist (arctan x) (pi / 2) < e) at_top" proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI) fix x assume "tan y < x" then have "arctan (tan y) < arctan x" by (simp add: arctan_less_iff) with y have "y < arctan x" by (subst (asm) arctan_tan) simp_all with arctan_ubound[of x, arith] y `0 < e` show "dist (arctan x) (pi / 2) < e" by (simp add: dist_real_def) qedqedlemma tendsto_arctan_at_bot: "(arctan ---> - (pi/2)) at_bot" unfolding filterlim_at_bot_mirror arctan_minus by (intro tendsto_minus tendsto_arctan_at_top)subsection {* More Theorems about Sin and Cos *}lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"proof - let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)" have nonneg: "0 \<le> ?c" by (simp add: cos_ge_zero) have "0 = cos (pi / 4 + pi / 4)" by simp also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>" by (simp only: cos_add power2_eq_square) also have "\<dots> = 2 * ?c\<twosuperior> - 1" by (simp add: sin_squared_eq) finally have "?c\<twosuperior> = (sqrt 2 / 2)\<twosuperior>" by (simp add: power_divide) thus ?thesis using nonneg by (rule power2_eq_imp_eq) simpqedlemma cos_30: "cos (pi / 6) = sqrt 3 / 2"proof - let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)" have pos_c: "0 < ?c" by (rule cos_gt_zero, simp, simp) have "0 = cos (pi / 6 + pi / 6 + pi / 6)" by simp also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s" by (simp only: cos_add sin_add) also have "\<dots> = ?c * (?c\<twosuperior> - 3 * ?s\<twosuperior>)" by (simp add: algebra_simps power2_eq_square) finally have "?c\<twosuperior> = (sqrt 3 / 2)\<twosuperior>" using pos_c by (simp add: sin_squared_eq power_divide) thus ?thesis using pos_c [THEN order_less_imp_le] by (rule power2_eq_imp_eq) simpqedlemma sin_45: "sin (pi / 4) = sqrt 2 / 2"by (simp add: sin_cos_eq cos_45)lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"by (simp add: sin_cos_eq cos_30)lemma cos_60: "cos (pi / 3) = 1 / 2"apply (rule power2_eq_imp_eq)apply (simp add: cos_squared_eq sin_60 power_divide)apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)donelemma sin_30: "sin (pi / 6) = 1 / 2"by (simp add: sin_cos_eq cos_60)lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"unfolding tan_def by (simp add: sin_30 cos_30)lemma tan_45: "tan (pi / 4) = 1"unfolding tan_def by (simp add: sin_45 cos_45)lemma tan_60: "tan (pi / 3) = sqrt 3"unfolding tan_def by (simp add: sin_60 cos_60)lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"proof - have "sin ((real n + 1/2) * pi) = cos (real n * pi)" by (auto simp add: algebra_simps sin_add) thus ?thesis by (simp add: real_of_nat_Suc distrib_right add_divide_distrib mult_commute [of pi])qedlemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"apply (subgoal_tac "cos (pi + pi/2) = 0", simp)apply (subst cos_add, simp)donelemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"by (auto simp add: mult_assoc)lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)apply (subst sin_add, simp)donelemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"by (simp only: cos_add sin_add real_of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)" by (auto intro!: DERIV_intros)lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"by (auto simp add: sin_zero_iff even_mult_two_ex)lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"by (cut_tac x = x in sin_cos_squared_add3, auto)subsection {* Machins formula *}lemma arctan_one: "arctan 1 = pi / 4" by (rule arctan_unique, simp_all add: tan_45 m2pi_less_pi)lemma tan_total_pi4: assumes "\<bar>x\<bar> < 1" shows "\<exists> z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"proof show "- (pi / 4) < arctan x \<and> arctan x < pi / 4 \<and> tan (arctan x) = x" unfolding arctan_one [symmetric] arctan_minus [symmetric] unfolding arctan_less_iff using assms by autoqedlemma arctan_add: assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1" shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"proof (rule arctan_unique [symmetric]) have "- (pi / 4) \<le> arctan x" and "- (pi / 4) < arctan y" unfolding arctan_one [symmetric] arctan_minus [symmetric] unfolding arctan_le_iff arctan_less_iff using assms by auto from add_le_less_mono [OF this] show 1: "- (pi / 2) < arctan x + arctan y" by simp have "arctan x \<le> pi / 4" and "arctan y < pi / 4" unfolding arctan_one [symmetric] unfolding arctan_le_iff arctan_less_iff using assms by auto from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi / 2" by simp show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)" using cos_gt_zero_pi [OF 1 2] by (simp add: tan_add)qedtheorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)"proof - have "\<bar>1 / 5\<bar> < (1 :: real)" by auto from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto moreover have "\<bar>5 / 12\<bar> < (1 :: real)" by auto from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto moreover have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto from arctan_add[OF this] have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto thus ?thesis unfolding arctan_one by algebraqedsubsection {* Introducing the arcus tangens power series *}lemma monoseq_arctan_series: fixes x :: real assumes "\<bar>x\<bar> \<le> 1" shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a")proof (cases "x = 0") case True thus ?thesis unfolding monoseq_def One_nat_def by autonext case False have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto show "monoseq ?a" proof - { fix n fix x :: real assume "0 \<le> x" and "x \<le> 1" have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" proof (rule mult_mono) show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))" by (rule frac_le) simp_all show "0 \<le> 1 / real (Suc (n * 2))" by auto show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)" by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`) show "0 \<le> x ^ Suc (Suc n * 2)" by (rule zero_le_power) (simp add: `0 \<le> x`) qed } note mono = this show ?thesis proof (cases "0 \<le> x") case True from mono[OF this `x \<le> 1`, THEN allI] show ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2) next case False hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto from mono[OF this] have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI]) qed qedqedlemma zeroseq_arctan_series: fixes x :: real assumes "\<bar>x\<bar> \<le> 1" shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0")proof (cases "x = 0") case True thus ?thesis unfolding One_nat_def by (auto simp add: tendsto_const)next case False have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto show "?a ----> 0" proof (cases "\<bar>x\<bar> < 1") case True hence "norm x < 1" by auto from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]] have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0" unfolding inverse_eq_divide Suc_eq_plus1 by simp then show ?thesis using pos2 by (rule LIMSEQ_linear) next case False hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x" unfolding One_nat_def by auto from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]] show ?thesis unfolding n_eq Suc_eq_plus1 by auto qedqedlemma summable_arctan_series: fixes x :: real and n :: nat assumes "\<bar>x\<bar> \<le> 1" shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "summable (?c x)") by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms])lemma less_one_imp_sqr_less_one: fixes x :: real assumes "\<bar>x\<bar> < 1" shows "x^2 < 1"proof - from mult_left_mono[OF less_imp_le[OF `\<bar>x\<bar> < 1`] abs_ge_zero[of x]] have "\<bar> x^2 \<bar> < 1" using `\<bar> x \<bar> < 1` unfolding numeral_2_eq_2 power_Suc2 by auto thus ?thesis using zero_le_power2 by autoqedlemma DERIV_arctan_series: assumes "\<bar> x \<bar> < 1" shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))" (is "DERIV ?arctan _ :> ?Int")proof - let "?f n" = "if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0" { fix n :: nat assume "even n" hence "2 * (n div 2) = n" by presburger } note n_even=this have if_eq: "\<And> n x'. ?f n * real (Suc n) * x'^n = (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)" using n_even by auto { fix x :: real assume "\<bar>x\<bar> < 1" hence "x^2 < 1" by (rule less_one_imp_sqr_less_one) have "summable (\<lambda> n. -1 ^ n * (x^2) ^n)" by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x^2 < 1` order_less_imp_le[OF `x^2 < 1`]) hence "summable (\<lambda> n. -1 ^ n * x^(2*n))" unfolding power_mult . } note summable_Integral = this { fix f :: "nat \<Rightarrow> real" have "\<And> x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" proof fix x :: real assume "f sums x" from sums_if[OF sums_zero this] show "(\<lambda> n. if even n then f (n div 2) else 0) sums x" by auto next fix x :: real assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x" from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult_commute]] show "f sums x" unfolding sums_def by auto qed hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" .. } note sums_even = this have Int_eq: "(\<Sum> n. ?f n * real (Suc n) * x^n) = ?Int" unfolding if_eq mult_commute[of _ 2] suminf_def sums_even[of "\<lambda> n. -1 ^ n * x ^ (2 * n)", symmetric] by auto { fix x :: real have if_eq': "\<And> n. (if even n then -1 ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n = (if even n then -1 ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)" using n_even by auto have idx_eq: "\<And> n. n * 2 + 1 = Suc (2 * n)" by auto have "(\<Sum> n. ?f n * x^(Suc n)) = ?arctan x" unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. -1 ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric] by auto } note arctan_eq = this have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)" proof (rule DERIV_power_series') show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto { fix x' :: real assume x'_bounds: "x' \<in> {- 1 <..< 1}" hence "\<bar>x'\<bar> < 1" by auto let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)" show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq by (rule sums_summable[where l="0 + ?S"], rule sums_if, rule sums_zero, rule summable_sums, rule summable_Integral[OF `\<bar>x'\<bar> < 1`]) } qed auto thus ?thesis unfolding Int_eq arctan_eq .qedlemma arctan_series: assumes "\<bar> x \<bar> \<le> 1" shows "arctan x = (\<Sum> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "_ = suminf (\<lambda> n. ?c x n)")proof - let "?c' x n" = "(-1)^n * x^(n*2)" { fix r x :: real assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r" have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto from DERIV_arctan_series[OF this] have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" . } note DERIV_arctan_suminf = this { fix x :: real assume "\<bar>x\<bar> \<le> 1" note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]] } note arctan_series_borders = this { fix x :: real assume "\<bar>x\<bar> < 1" have "arctan x = (\<Sum> k. ?c x k)" proof - obtain r where "\<bar>x\<bar> < r" and "r < 1" using dense[OF `\<bar>x\<bar> < 1`] by blast hence "0 < r" and "-r < x" and "x < r" by auto have suminf_eq_arctan_bounded: "\<And> x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow> suminf (?c x) - arctan x = suminf (?c a) - arctan a" proof - fix x a b assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" hence "\<bar>x\<bar> < r" by auto show "suminf (?c x) - arctan x = suminf (?c a) - arctan a" proof (rule DERIV_isconst2[of "a" "b"]) show "a < b" and "a \<le> x" and "x \<le> b" using `a < b` `a \<le> x` `x \<le> b` by auto have "\<forall> x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" proof (rule allI, rule impI) fix x assume "-r < x \<and> x < r" hence "\<bar>x\<bar> < r" by auto hence "\<bar>x\<bar> < 1" using `r < 1` by auto have "\<bar> - (x^2) \<bar> < 1" using less_one_imp_sqr_less_one[OF `\<bar>x\<bar> < 1`] by auto hence "(\<lambda> n. (- (x^2)) ^ n) sums (1 / (1 - (- (x^2))))" unfolding real_norm_def[symmetric] by (rule geometric_sums) hence "(?c' x) sums (1 / (1 - (- (x^2))))" unfolding power_mult_distrib[symmetric] power_mult nat_mult_commute[of _ 2] by auto hence suminf_c'_eq_geom: "inverse (1 + x^2) = suminf (?c' x)" using sums_unique unfolding inverse_eq_divide by auto have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x^2))" unfolding suminf_c'_eq_geom by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`]) from DERIV_add_minus[OF this DERIV_arctan] show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" unfolding diff_minus by auto qed hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `-r < a` `b < r` by auto thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `\<bar>x\<bar> < r` by auto show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y" using DERIV_in_rball DERIV_isCont by auto qed qed have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0" unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero by auto have "suminf (?c x) - arctan x = 0" proof (cases "x = 0") case True thus ?thesis using suminf_arctan_zero by auto next case False hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0" by (rule suminf_eq_arctan_bounded[where x="0" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>", symmetric]) (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less) moreover have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)" by (rule suminf_eq_arctan_bounded[where x="x" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>"]) (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less) ultimately show ?thesis using suminf_arctan_zero by auto qed thus ?thesis by auto qed } note when_less_one = this show "arctan x = suminf (\<lambda> n. ?c x n)" proof (cases "\<bar>x\<bar> < 1") case True thus ?thesis by (rule when_less_one) next case False hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto let "?a x n" = "\<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>" let "?diff x n" = "\<bar> arctan x - (\<Sum> i = 0..<n. ?c x i)\<bar>" { fix n :: nat have "0 < (1 :: real)" by auto moreover { fix x :: real assume "0 < x" and "x < 1" hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)" by auto note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec] have "0 < 1 / real (n*2+1) * x^(n*2+1)" by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto) hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)" by (rule abs_of_pos) have "?diff x n \<le> ?a x n" proof (cases "even n") case True hence sgn_pos: "(-1)^n = (1::real)" by auto from `even n` obtain m where "2 * m = n" unfolding even_mult_two_ex by auto from bounds[of m, unfolded this atLeastAtMost_iff] have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n + 1. (?c x i)) - (\<Sum>i = 0..<n. (?c x i))" by auto also have "\<dots> = ?c x n" unfolding One_nat_def by auto also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto finally show ?thesis . next case False hence sgn_neg: "(-1)^n = (-1::real)" by auto from `odd n` obtain m where m_def: "2 * m + 1 = n" unfolding odd_Suc_mult_two_ex by auto hence m_plus: "2 * (m + 1) = n + 1" by auto from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2] have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n. (?c x i)) - (\<Sum>i = 0..<n+1. (?c x i))" by auto also have "\<dots> = - ?c x n" unfolding One_nat_def by auto also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto finally show ?thesis . qed hence "0 \<le> ?a x n - ?diff x n" by auto } hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x" unfolding diff_minus divide_inverse by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum) ultimately have "0 \<le> ?a 1 n - ?diff 1 n" by (rule LIM_less_bound) hence "?diff 1 n \<le> ?a 1 n" by auto } have "?a 1 ----> 0" unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat) have "?diff 1 ----> 0" proof (rule LIMSEQ_I) fix r :: real assume "0 < r" obtain N :: nat where N_I: "\<And> n. N \<le> n \<Longrightarrow> ?a 1 n < r" using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto { fix n assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this] have "norm (?diff 1 n - 0) < r" by auto } thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast qed from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus] have "(?c 1) sums (arctan 1)" unfolding sums_def by auto hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique) show ?thesis proof (cases "x = 1", simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`) assume "x \<noteq> 1" hence "x = -1" using `\<bar>x\<bar> = 1` by auto have "- (pi / 2) < 0" using pi_gt_zero by auto have "- (2 * pi) < 0" using pi_gt_zero by auto have c_minus_minus: "\<And> i. ?c (- 1) i = - ?c 1 i" unfolding One_nat_def by auto have "arctan (- 1) = arctan (tan (-(pi / 4)))" unfolding tan_45 tan_minus .. also have "\<dots> = - (pi / 4)" by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero]) also have "\<dots> = - (arctan (tan (pi / 4)))" unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero]) also have "\<dots> = - (arctan 1)" unfolding tan_45 .. also have "\<dots> = - (\<Sum> i. ?c 1 i)" using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto also have "\<dots> = (\<Sum> i. ?c (- 1) i)" using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]] unfolding c_minus_minus by auto finally show ?thesis using `x = -1` by auto qed qedqedlemma arctan_half: fixes x :: real shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x^2)))"proof - obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x" using tan_total by blast hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2" by auto have divide_nonzero_divide: "\<And> A B C :: real. C \<noteq> 0 \<Longrightarrow> A / B = (A / C) / (B / C)" by auto have "0 < cos y" using cos_gt_zero_pi[OF low high] . hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y) ^ 2) = cos y" by auto have "1 + (tan y)^2 = 1 + sin y^2 / cos y^2" unfolding tan_def power_divide .. also have "\<dots> = cos y^2 / cos y^2 + sin y^2 / cos y^2" using `cos y \<noteq> 0` by auto also have "\<dots> = 1 / cos y^2" unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 .. finally have "1 + (tan y)^2 = 1 / cos y^2" . have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)" unfolding tan_def divide_nonzero_divide[OF `cos y \<noteq> 0`, symmetric] .. also have "\<dots> = tan y / (1 + 1 / cos y)" using `cos y \<noteq> 0` unfolding add_divide_distrib by auto also have "\<dots> = tan y / (1 + 1 / sqrt(cos y^2))" unfolding cos_sqrt .. also have "\<dots> = tan y / (1 + sqrt(1 / cos y^2))" unfolding real_sqrt_divide by auto finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)^2))" unfolding `1 + (tan y)^2 = 1 / cos y^2` . have "arctan x = y" using arctan_tan low high y_eq by auto also have "\<dots> = 2 * (arctan (tan (y/2)))" using arctan_tan[OF low2 high2] by auto also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))" unfolding tan_half by auto finally show ?thesis unfolding eq `tan y = x` .qedlemma arctan_monotone: assumes "x < y" shows "arctan x < arctan y" using assms by (simp only: arctan_less_iff)lemma arctan_monotone': assumes "x \<le> y" shows "arctan x \<le> arctan y" using assms by (simp only: arctan_le_iff)lemma arctan_inverse: assumes "x \<noteq> 0" shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"proof (rule arctan_unique) show "- (pi / 2) < sgn x * pi / 2 - arctan x" using arctan_bounded [of x] assms unfolding sgn_real_def apply (auto simp add: algebra_simps) apply (drule zero_less_arctan_iff [THEN iffD2]) apply arith done show "sgn x * pi / 2 - arctan x < pi / 2" using arctan_bounded [of "- x"] assms unfolding sgn_real_def arctan_minus by auto show "tan (sgn x * pi / 2 - arctan x) = 1 / x" unfolding tan_inverse [of "arctan x", unfolded tan_arctan] unfolding sgn_real_def by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)qedtheorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")proof - have "pi / 4 = arctan 1" using arctan_one by auto also have "\<dots> = ?SUM" using arctan_series[of 1] by auto finally show ?thesis by autoqedsubsection {* Existence of Polar Coordinates *}lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1"apply (rule power2_le_imp_le [OF _ zero_le_one])apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)donelemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"by (simp add: abs_le_iff)lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)"by (simp add: sin_arccos abs_le_iff)lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]lemma polar_ex1: "0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a"apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI)apply (simp add: cos_arccos_lemma1)apply (simp add: sin_arccos_lemma1)apply (simp add: power_divide)apply (simp add: real_sqrt_mult [symmetric])apply (simp add: right_diff_distrib)donelemma polar_ex2: "y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a"apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify)apply (metis cos_minus minus_minus minus_mult_right sin_minus)donelemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"apply (rule_tac x=0 and y=y in linorder_cases)apply (erule polar_ex1)apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp)apply (erule polar_ex2)doneend