(* Title: Provers/quantifier1
ID: $Id$
Author: Tobias Nipkow
Copyright 1997 TU Munich
Simplification procedures for turning
? x. ... & x = t & ...
into ? x. x = t & ... & ...
where the `? x. x = t &' in the latter formula is eliminated
by ordinary simplification.
and ! x. (... & x = t & ...) --> P x
into ! x. x = t --> (... & ...) --> P x
where the `!x. x=t -->' in the latter formula is eliminated
by ordinary simplification.
NB Simproc is only triggered by "!x. P(x) & P'(x) --> Q(x)";
"!x. x=t --> P(x)" is covered by the congreunce rule for -->;
"!x. t=x --> P(x)" must be taken care of by an ordinary rewrite rule.
Gries etc call this the "1 point rules"
*)
signature QUANTIFIER1_DATA =
sig
(*abstract syntax*)
val dest_eq: term -> (term*term*term)option
val dest_conj: term -> (term*term*term)option
val conj: term
val imp: term
(*rules*)
val iff_reflection: thm (* P <-> Q ==> P == Q *)
val iffI: thm
val sym: thm
val conjI: thm
val conjE: thm
val impI: thm
val impE: thm
val mp: thm
val exI: thm
val exE: thm
val allI: thm
val allE: thm
end;
signature QUANTIFIER1 =
sig
val rearrange_all: Sign.sg -> thm list -> term -> thm option
val rearrange_ex: Sign.sg -> thm list -> term -> thm option
end;
functor Quantifier1Fun(Data: QUANTIFIER1_DATA): QUANTIFIER1 =
struct
open Data;
fun def eq = case dest_eq eq of
Some(c,s,t) =>
if s = Bound 0 andalso not(loose_bvar1(t,0)) then Some eq else
if t = Bound 0 andalso not(loose_bvar1(s,0)) then Some(c$t$s)
else None
| None => None;
fun extract conj = case dest_conj conj of
Some(conj,P,Q) =>
(case def P of
Some eq => Some(eq,Q)
| None =>
(case def Q of
Some eq => Some(eq,P)
| None =>
(case extract P of
Some(eq,P') => Some(eq, conj $ P' $ Q)
| None =>
(case extract Q of
Some(eq,Q') => Some(eq,conj $ P $ Q')
| None => None))))
| None => None;
fun prove_conv tac sg tu =
let val meta_eq = cterm_of sg (Logic.mk_equals tu)
in prove_goalw_cterm [] meta_eq (K [rtac iff_reflection 1, tac])
handle ERROR =>
error("The error(s) above occurred while trying to prove " ^
string_of_cterm meta_eq)
end;
val prove_all_tac = EVERY1[rtac iffI,
rtac allI, etac allE, rtac impI, rtac impI, etac mp,
REPEAT o (etac conjE),
REPEAT o (ares_tac [conjI] ORELSE' etac sym),
rtac allI, etac allE, rtac impI, REPEAT o (etac conjE),
etac impE, atac ORELSE' etac sym, etac mp,
REPEAT o (ares_tac [conjI])];
fun rearrange_all sg _ (F as all $ Abs(x,T,(* --> *)_ $ P $ Q)) =
(case extract P of
None => None
| Some(eq,P') =>
let val R = imp $ eq $ (imp $ P' $ Q)
in Some(prove_conv prove_all_tac sg (F,all$Abs(x,T,R))) end)
| rearrange_all _ _ _ = None;
val prove_ex_tac = rtac iffI 1 THEN
ALLGOALS(EVERY'[etac exE, REPEAT o (etac conjE),
rtac exI, REPEAT o (ares_tac [conjI] ORELSE' etac sym)]);
fun rearrange_ex sg _ (F as ex $ Abs(x,T,P)) =
(case extract P of
None => None
| Some(eq,Q) =>
Some(prove_conv prove_ex_tac sg (F,ex $ Abs(x,T,conj$eq$Q))))
| rearrange_ex _ _ _ = None;
end;