(* Title: Pure/Isar/isar_cmd.ML
Author: Markus Wenzel, TU Muenchen
Miscellaneous Isar commands.
*)
signature ISAR_CMD =
sig
val setup: Input.source -> theory -> theory
val local_setup: Input.source -> Proof.context -> Proof.context
val parse_ast_translation: Input.source -> theory -> theory
val parse_translation: Input.source -> theory -> theory
val print_translation: Input.source -> theory -> theory
val typed_print_translation: Input.source -> theory -> theory
val print_ast_translation: Input.source -> theory -> theory
val translations: (xstring * string) Syntax.trrule list -> theory -> theory
val no_translations: (xstring * string) Syntax.trrule list -> theory -> theory
val oracle: bstring * Position.range -> Input.source -> theory -> theory
val declaration: {syntax: bool, pervasive: bool} -> Input.source -> local_theory -> local_theory
val simproc_setup: Input.source Simplifier.simproc_setup -> local_theory -> local_theory
val qed: Method.text_range option -> Toplevel.transition -> Toplevel.transition
val terminal_proof: Method.text_range * Method.text_range option ->
Toplevel.transition -> Toplevel.transition
val default_proof: Toplevel.transition -> Toplevel.transition
val immediate_proof: Toplevel.transition -> Toplevel.transition
val done_proof: Toplevel.transition -> Toplevel.transition
val skip_proof: Toplevel.transition -> Toplevel.transition
val ml_diag: bool -> Input.source -> Toplevel.transition -> Toplevel.transition
val diag_state: Proof.context -> Toplevel.state
val diag_goal: Proof.context -> {context: Proof.context, facts: thm list, goal: thm}
val pretty_theorems: bool -> Toplevel.state -> Pretty.T list
val print_stmts: string list * (Facts.ref * Token.src list) list
-> Toplevel.transition -> Toplevel.transition
val print_thms: string list * (Facts.ref * Token.src list) list
-> Toplevel.transition -> Toplevel.transition
val print_prfs: bool -> string list * (Facts.ref * Token.src list) list option
-> Toplevel.transition -> Toplevel.transition
val print_prop: (string list * string) -> Toplevel.transition -> Toplevel.transition
val print_term: (string list * string) -> Toplevel.transition -> Toplevel.transition
val print_type: (string list * (string * string option)) ->
Toplevel.transition -> Toplevel.transition
end;
structure Isar_Cmd: ISAR_CMD =
struct
(** theory declarations **)
(* generic setup *)
fun setup source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (" @ ML_Lex.read_source source @ ML_Lex.read ")")
|> Context.theory_map;
fun local_setup source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.local_setup (" @ ML_Lex.read_source source @ ML_Lex.read ")")
|> Context.proof_map;
(* translation functions *)
fun parse_ast_translation source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (Sign.parse_ast_translation (" @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.theory_map;
fun parse_translation source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (Sign.parse_translation (" @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.theory_map;
fun print_translation source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (Sign.print_translation (" @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.theory_map;
fun typed_print_translation source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (Sign.typed_print_translation (" @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.theory_map;
fun print_ast_translation source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "Theory.setup (Sign.print_ast_translation (" @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.theory_map;
(* translation rules *)
fun read_trrules thy raw_rules =
let
val ctxt = Proof_Context.init_global thy;
val read_root =
#1 o dest_Type o Proof_Context.read_type_name {proper = true, strict = false} ctxt;
in
raw_rules
|> map (Syntax.map_trrule (fn (r, s) => Syntax_Phases.parse_ast_pattern ctxt (read_root r, s)))
end;
fun translations args thy = Sign.add_trrules (read_trrules thy args) thy;
fun no_translations args thy = Sign.del_trrules (read_trrules thy args) thy;
(* oracles *)
fun oracle (name, range) source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read "val " @
ML_Lex.read_range range name @
ML_Lex.read
(" = snd (Theory.setup_result (Thm.add_oracle (" ^
ML_Syntax.make_binding (name, #1 range) ^ ", ") @
ML_Lex.read_source source @ ML_Lex.read ")))")
|> Context.theory_map;
(* declarations *)
fun declaration {syntax, pervasive} source =
ML_Context.expression (Input.pos_of source)
(ML_Lex.read
("Theory.local_setup (Local_Theory.declaration {syntax = " ^
Bool.toString syntax ^ ", pervasive = " ^ Bool.toString pervasive ^
", pos = " ^ ML_Syntax.print_position (Position.thread_data ()) ^ "} (") @
ML_Lex.read_source source @ ML_Lex.read "))")
|> Context.proof_map;
(* simprocs *)
fun simproc_setup arg =
Context.proof_map
(ML_Context.expression (Input.pos_of (#proc arg))
(ML_Lex.read "Simplifier.simproc_setup_local " @ Simplifier.simproc_setup_ml arg));
(* local endings *)
fun local_qed m = Toplevel.proof (Proof.local_qed (m, true));
val local_terminal_proof = Toplevel.proof o Proof.local_future_terminal_proof;
val local_default_proof = Toplevel.proof Proof.local_default_proof;
val local_immediate_proof = Toplevel.proof Proof.local_immediate_proof;
val local_done_proof = Toplevel.proof Proof.local_done_proof;
val local_skip_proof = Toplevel.proof' Proof.local_skip_proof;
(* global endings *)
fun global_qed m = Toplevel.end_proof (K (Proof.global_qed (m, true)));
val global_terminal_proof = Toplevel.end_proof o K o Proof.global_future_terminal_proof;
val global_default_proof = Toplevel.end_proof (K Proof.global_default_proof);
val global_immediate_proof = Toplevel.end_proof (K Proof.global_immediate_proof);
val global_skip_proof = Toplevel.end_proof Proof.global_skip_proof;
val global_done_proof = Toplevel.end_proof (K Proof.global_done_proof);
(* common endings *)
fun qed m = local_qed m o global_qed m;
fun terminal_proof m = local_terminal_proof m o global_terminal_proof m;
val default_proof = local_default_proof o global_default_proof;
val immediate_proof = local_immediate_proof o global_immediate_proof;
val done_proof = local_done_proof o global_done_proof;
val skip_proof = local_skip_proof o global_skip_proof;
(* diagnostic ML evaluation *)
structure Diag_State = Proof_Data
(
type T = Toplevel.state option;
fun init _ = NONE;
);
fun ml_diag verbose source = Toplevel.keep (fn state =>
let
val opt_ctxt =
try Toplevel.generic_theory_of state
|> Option.map (Context.proof_of #> Diag_State.put (SOME state));
val flags = ML_Compiler.verbose verbose ML_Compiler.flags;
in ML_Context.eval_source_in opt_ctxt flags source end);
fun diag_state ctxt =
(case Diag_State.get ctxt of
SOME st => st
| NONE => Toplevel.make_state NONE);
val diag_goal = Proof.goal o Toplevel.proof_of o diag_state;
val _ = Theory.setup
(ML_Antiquotation.value (Binding.qualify true "Isar" \<^binding>\<open>state\<close>)
(Scan.succeed "Isar_Cmd.diag_state ML_context") #>
ML_Antiquotation.value (Binding.qualify true "Isar" \<^binding>\<open>goal\<close>)
(Scan.succeed "Isar_Cmd.diag_goal ML_context"));
(* theorems of theory or proof context *)
fun pretty_theorems verbose st =
if Toplevel.is_proof st then
Proof_Context.pretty_local_facts verbose (Toplevel.context_of st)
else
let
val ctxt = Toplevel.context_of st;
val prev_thys =
(case Toplevel.previous_theory_of st of
SOME thy => [thy]
| NONE => Theory.parents_of (Proof_Context.theory_of ctxt));
in Proof_Display.pretty_theorems_diff verbose prev_thys ctxt end;
(* print theorems, terms, types etc. *)
local
fun string_of_stmts ctxt args =
Attrib.eval_thms ctxt args
|> map (Element.pretty_statement ctxt Thm.theoremK)
|> Pretty.chunks2 |> Pretty.string_of;
fun string_of_thms ctxt args =
Pretty.string_of (Proof_Context.pretty_fact ctxt ("", Attrib.eval_thms ctxt args));
fun string_of_prfs full state arg =
Pretty.string_of
(case arg of
NONE =>
let
val {context = ctxt, goal = thm} = Proof.simple_goal (Toplevel.proof_of state);
val thy = Proof_Context.theory_of ctxt;
val prf = Thm.proof_of thm;
val prop = Thm.full_prop_of thm;
val prf' = Proofterm.rewrite_proof_notypes ([], []) prf;
in
Proof_Syntax.pretty_proof ctxt
(if full then Proofterm.reconstruct_proof thy prop prf' else prf')
end
| SOME srcs =>
let
val ctxt = Toplevel.context_of state;
val pretty_proof = Proof_Syntax.pretty_standard_proof_of ctxt full;
in Pretty.chunks (map pretty_proof (Attrib.eval_thms ctxt srcs)) end);
fun string_of_prop ctxt s =
let
val prop = Syntax.read_prop ctxt s;
val ctxt' = Proof_Context.augment prop ctxt;
in Pretty.string_of (Pretty.quote (Syntax.pretty_term ctxt' prop)) end;
fun string_of_term ctxt s =
let
val t = Syntax.read_term ctxt s;
val T = Term.type_of t;
val ctxt' = Proof_Context.augment t ctxt;
in
Pretty.string_of
(Pretty.block [Pretty.quote (Syntax.pretty_term ctxt' t), Pretty.fbrk,
Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt' T)])
end;
fun string_of_type ctxt (s, NONE) =
let val T = Syntax.read_typ ctxt s
in Pretty.string_of (Pretty.quote (Syntax.pretty_typ ctxt T)) end
| string_of_type ctxt (s1, SOME s2) =
let
val ctxt' = Config.put show_sorts true ctxt;
val raw_T = Syntax.parse_typ ctxt' s1;
val S = Syntax.read_sort ctxt' s2;
val T =
Syntax.check_term ctxt'
(Logic.mk_type raw_T |> Type.constraint (Term.itselfT (Type_Infer.anyT S)))
|> Logic.dest_type;
in Pretty.string_of (Pretty.quote (Syntax.pretty_typ ctxt' T)) end;
fun print_item string_of (modes, arg) = Toplevel.keep (fn state =>
Print_Mode.with_modes modes (fn () => writeln (string_of state arg)) ());
in
val print_stmts = print_item (string_of_stmts o Toplevel.context_of);
val print_thms = print_item (string_of_thms o Toplevel.context_of);
val print_prfs = print_item o string_of_prfs;
val print_prop = print_item (string_of_prop o Toplevel.context_of);
val print_term = print_item (string_of_term o Toplevel.context_of);
val print_type = print_item (string_of_type o Toplevel.context_of);
end;
end;