(* ID: $Id$ *)
theory Basic imports Main begin
lemma conj_rule: "\<lbrakk> P; Q \<rbrakk> \<Longrightarrow> P \<and> (Q \<and> P)"
apply (rule conjI)
apply assumption
apply (rule conjI)
apply assumption
apply assumption
done
lemma disj_swap: "P | Q \<Longrightarrow> Q | P"
apply (erule disjE)
apply (rule disjI2)
apply assumption
apply (rule disjI1)
apply assumption
done
lemma conj_swap: "P \<and> Q \<Longrightarrow> Q \<and> P"
apply (rule conjI)
apply (drule conjunct2)
apply assumption
apply (drule conjunct1)
apply assumption
done
lemma imp_uncurry: "P \<longrightarrow> Q \<longrightarrow> R \<Longrightarrow> P \<and> Q \<longrightarrow> R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
apply (drule mp)
apply assumption
apply assumption
done
text {*
by eliminates uses of assumption and done
*}
lemma imp_uncurry': "P \<longrightarrow> Q \<longrightarrow> R \<Longrightarrow> P \<and> Q \<longrightarrow> R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
by (drule mp)
text {*
substitution
@{thm[display] ssubst}
\rulename{ssubst}
*};
lemma "\<lbrakk> x = f x; P(f x) \<rbrakk> \<Longrightarrow> P x"
by (erule ssubst)
text {*
also provable by simp (re-orients)
*};
text {*
the subst method
@{thm[display] mult_commute}
\rulename{mult_commute}
this would fail:
apply (simp add: mult_commute)
*};
lemma "\<lbrakk>P x y z; Suc x < y\<rbrakk> \<Longrightarrow> f z = x*y"
txt{*
@{subgoals[display,indent=0,margin=65]}
*};
apply (subst mult_commute)
txt{*
@{subgoals[display,indent=0,margin=65]}
*};
oops
(*exercise involving THEN*)
lemma "\<lbrakk>P x y z; Suc x < y\<rbrakk> \<Longrightarrow> f z = x*y"
apply (rule mult_commute [THEN ssubst])
oops
lemma "\<lbrakk>x = f x; triple (f x) (f x) x\<rbrakk> \<Longrightarrow> triple x x x"
apply (erule ssubst)
--{* @{subgoals[display,indent=0,margin=65]} *}
back --{* @{subgoals[display,indent=0,margin=65]} *}
back --{* @{subgoals[display,indent=0,margin=65]} *}
back --{* @{subgoals[display,indent=0,margin=65]} *}
back --{* @{subgoals[display,indent=0,margin=65]} *}
apply assumption
done
lemma "\<lbrakk> x = f x; triple (f x) (f x) x \<rbrakk> \<Longrightarrow> triple x x x"
apply (erule ssubst, assumption)
done
text{*
or better still
*}
lemma "\<lbrakk> x = f x; triple (f x) (f x) x \<rbrakk> \<Longrightarrow> triple x x x"
by (erule ssubst)
lemma "\<lbrakk> x = f x; triple (f x) (f x) x \<rbrakk> \<Longrightarrow> triple x x x"
apply (erule_tac P="\<lambda>u. triple u u x" in ssubst)
apply (assumption)
done
lemma "\<lbrakk> x = f x; triple (f x) (f x) x \<rbrakk> \<Longrightarrow> triple x x x"
by (erule_tac P="\<lambda>u. triple u u x" in ssubst)
text {*
negation
@{thm[display] notI}
\rulename{notI}
@{thm[display] notE}
\rulename{notE}
@{thm[display] classical}
\rulename{classical}
@{thm[display] contrapos_pp}
\rulename{contrapos_pp}
@{thm[display] contrapos_pn}
\rulename{contrapos_pn}
@{thm[display] contrapos_np}
\rulename{contrapos_np}
@{thm[display] contrapos_nn}
\rulename{contrapos_nn}
*};
lemma "\<lbrakk>\<not>(P\<longrightarrow>Q); \<not>(R\<longrightarrow>Q)\<rbrakk> \<Longrightarrow> R"
apply (erule_tac Q="R\<longrightarrow>Q" in contrapos_np)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (intro impI)
--{* @{subgoals[display,indent=0,margin=65]} *}
by (erule notE)
text {*
@{thm[display] disjCI}
\rulename{disjCI}
*};
lemma "(P \<or> Q) \<and> R \<Longrightarrow> P \<or> Q \<and> R"
apply (intro disjCI conjI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (elim conjE disjE)
apply assumption
--{* @{subgoals[display,indent=0,margin=65]} *}
by (erule contrapos_np, rule conjI)
text{*
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{6}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
{\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ R
*}
text{*rule_tac, etc.*}
lemma "P&Q"
apply (rule_tac P=P and Q=Q in conjI)
oops
text{*unification failure trace *}
ML "Unsynchronized.set trace_unify_fail"
lemma "P(a, f(b, g(e,a), b), a) \<Longrightarrow> P(a, f(b, g(c,a), b), a)"
txt{*
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: e =/= c
Clash: == =/= Trueprop
*}
oops
lemma "\<forall>x y. P(x,y) --> P(y,x)"
apply auto
txt{*
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: bound variable x (depth 1) =/= bound variable y (depth 0)
Clash: == =/= Trueprop
Clash: == =/= Trueprop
*}
oops
ML "Unsynchronized.reset trace_unify_fail"
text{*Quantifiers*}
text {*
@{thm[display] allI}
\rulename{allI}
@{thm[display] allE}
\rulename{allE}
@{thm[display] spec}
\rulename{spec}
*};
lemma "\<forall>x. P x \<longrightarrow> P x"
apply (rule allI)
by (rule impI)
lemma "(\<forall>x. P \<longrightarrow> Q x) \<Longrightarrow> P \<longrightarrow> (\<forall>x. Q x)"
apply (rule impI, rule allI)
apply (drule spec)
by (drule mp)
text{*rename_tac*}
lemma "x < y \<Longrightarrow> \<forall>x y. P x (f y)"
apply (intro allI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rename_tac v w)
--{* @{subgoals[display,indent=0,margin=65]} *}
oops
lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (h x); P a\<rbrakk> \<Longrightarrow> P(h (h a))"
apply (frule spec)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule mp, assumption)
apply (drule spec)
--{* @{subgoals[display,indent=0,margin=65]} *}
by (drule mp)
lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (f x); P a\<rbrakk> \<Longrightarrow> P(f (f a))"
by blast
text{*
the existential quantifier*}
text {*
@{thm[display]"exI"}
\rulename{exI}
@{thm[display]"exE"}
\rulename{exE}
*};
text{*
instantiating quantifiers explicitly by rule_tac and erule_tac*}
lemma "\<lbrakk>\<forall>x. P x \<longrightarrow> P (h x); P a\<rbrakk> \<Longrightarrow> P(h (h a))"
apply (frule spec)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule mp, assumption)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule_tac x = "h a" in spec)
--{* @{subgoals[display,indent=0,margin=65]} *}
by (drule mp)
text {*
@{thm[display]"dvd_def"}
\rulename{dvd_def}
*};
lemma mult_dvd_mono: "\<lbrakk>i dvd m; j dvd n\<rbrakk> \<Longrightarrow> i*j dvd (m*n :: nat)"
apply (simp add: dvd_def)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule exE)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (erule exE)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rename_tac l)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule_tac x="k*l" in exI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply simp
done
text{*
Hilbert-epsilon theorems*}
text{*
@{thm[display] the_equality[no_vars]}
\rulename{the_equality}
@{thm[display] some_equality[no_vars]}
\rulename{some_equality}
@{thm[display] someI[no_vars]}
\rulename{someI}
@{thm[display] someI2[no_vars]}
\rulename{someI2}
@{thm[display] someI_ex[no_vars]}
\rulename{someI_ex}
needed for examples
@{thm[display] inv_def[no_vars]}
\rulename{inv_def}
@{thm[display] Least_def[no_vars]}
\rulename{Least_def}
@{thm[display] order_antisym[no_vars]}
\rulename{order_antisym}
*}
lemma "inv Suc (Suc n) = n"
by (simp add: inv_def)
text{*but we know nothing about inv Suc 0*}
theorem Least_equality:
"\<lbrakk> P (k::nat); \<forall>x. P x \<longrightarrow> k \<le> x \<rbrakk> \<Longrightarrow> (LEAST x. P(x)) = k"
apply (simp add: Least_def)
txt{*
@{subgoals[display,indent=0,margin=65]}
*};
apply (rule the_equality)
txt{*
@{subgoals[display,indent=0,margin=65]}
first subgoal is existence; second is uniqueness
*};
by (auto intro: order_antisym)
theorem axiom_of_choice:
"(\<forall>x. \<exists>y. P x y) \<Longrightarrow> \<exists>f. \<forall>x. P x (f x)"
apply (rule exI, rule allI)
txt{*
@{subgoals[display,indent=0,margin=65]}
state after intro rules
*};
apply (drule spec, erule exE)
txt{*
@{subgoals[display,indent=0,margin=65]}
applying @text{someI} automatically instantiates
@{term f} to @{term "\<lambda>x. SOME y. P x y"}
*};
by (rule someI)
(*both can be done by blast, which however hasn't been introduced yet*)
lemma "[| P (k::nat); \<forall>x. P x \<longrightarrow> k \<le> x |] ==> (LEAST x. P(x)) = k";
apply (simp add: Least_def LeastM_def)
by (blast intro: some_equality order_antisym);
theorem axiom_of_choice': "(\<forall>x. \<exists>y. P x y) \<Longrightarrow> \<exists>f. \<forall>x. P x (f x)"
apply (rule exI [of _ "\<lambda>x. SOME y. P x y"])
by (blast intro: someI);
text{*end of Epsilon section*}
lemma "(\<exists>x. P x) \<or> (\<exists>x. Q x) \<Longrightarrow> \<exists>x. P x \<or> Q x"
apply (elim exE disjE)
apply (intro exI disjI1)
apply assumption
apply (intro exI disjI2)
apply assumption
done
lemma "(P\<longrightarrow>Q) \<or> (Q\<longrightarrow>P)"
apply (intro disjCI impI)
apply (elim notE)
apply (intro impI)
apply assumption
done
lemma "(P\<or>Q)\<and>(P\<or>R) \<Longrightarrow> P \<or> (Q\<and>R)"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply blast
apply blast
apply blast
apply blast
(*apply elim*)
done
lemma "(\<exists>x. P \<and> Q x) \<Longrightarrow> P \<and> (\<exists>x. Q x)"
apply (erule exE)
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule exI)
apply assumption
done
lemma "(\<exists>x. P x) \<and> (\<exists>x. Q x) \<Longrightarrow> \<exists>x. P x \<and> Q x"
apply (erule conjE)
apply (erule exE)
apply (erule exE)
apply (rule exI)
apply (rule conjI)
apply assumption
oops
lemma "\<forall>y. R y y \<Longrightarrow> \<exists>x. \<forall>y. R x y"
apply (rule exI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (rule allI)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (drule spec)
--{* @{subgoals[display,indent=0,margin=65]} *}
oops
lemma "\<forall>x. \<exists>y. x=y"
apply (rule allI)
apply (rule exI)
apply (rule refl)
done
lemma "\<exists>x. \<forall>y. x=y"
apply (rule exI)
apply (rule allI)
oops
end