(* Title: RBT_Impl.thy
Author: Markus Reiter, TU Muenchen
Author: Alexander Krauss, TU Muenchen
*)
header {* Implementation of Red-Black Trees *}
theory RBT_Impl
imports Main More_List
begin
text {*
For applications, you should use theory @{text RBT} which defines
an abstract type of red-black tree obeying the invariant.
*}
subsection {* Datatype of RB trees *}
datatype color = R | B
datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
lemma rbt_cases:
obtains (Empty) "t = Empty"
| (Red) l k v r where "t = Branch R l k v r"
| (Black) l k v r where "t = Branch B l k v r"
proof (cases t)
case Empty with that show thesis by blast
next
case (Branch c) with that show thesis by (cases c) blast+
qed
subsection {* Tree properties *}
subsubsection {* Content of a tree *}
primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
where
"entries Empty = []"
| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
where
"entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)"
definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
"keys t = map fst (entries t)"
lemma keys_simps [simp, code]:
"keys Empty = []"
"keys (Branch c l k v r) = keys l @ k # keys r"
by (simp_all add: keys_def)
lemma entry_in_tree_keys:
assumes "(k, v) \<in> set (entries t)"
shows "k \<in> set (keys t)"
proof -
from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI)
then show ?thesis by (simp add: keys_def)
qed
lemma keys_entries:
"k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))"
by (auto intro: entry_in_tree_keys) (auto simp add: keys_def)
subsubsection {* Search tree properties *}
definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
where
tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)"
abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
where "t |\<guillemotleft> x \<equiv> tree_less x t"
definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50)
where
tree_greater_prop: "tree_greater k t = (\<forall>x\<in>set (keys t). k < x)"
lemma tree_less_simps [simp]:
"tree_less k Empty = True"
"tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
by (auto simp add: tree_less_prop)
lemma tree_greater_simps [simp]:
"tree_greater k Empty = True"
"tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
by (auto simp add: tree_greater_prop)
lemmas tree_ord_props = tree_less_prop tree_greater_prop
lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
lemma tree_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v"
and tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
and tree_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r"
and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
by (auto simp: tree_ord_props)
primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
where
"sorted Empty = True"
| "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
lemma sorted_entries:
"sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
by (induct t)
(force simp: sorted_append sorted_Cons tree_ord_props
dest!: entry_in_tree_keys)+
lemma distinct_entries:
"sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
by (induct t)
(force simp: sorted_append sorted_Cons tree_ord_props
dest!: entry_in_tree_keys)+
subsubsection {* Tree lookup *}
primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
where
"lookup Empty k = None"
| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = set (keys t)"
by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
lemma dom_lookup_Branch:
"sorted (Branch c t1 k v t2) \<Longrightarrow>
dom (lookup (Branch c t1 k v t2))
= Set.insert k (dom (lookup t1) \<union> dom (lookup t2))"
proof -
assume "sorted (Branch c t1 k v t2)"
moreover from this have "sorted t1" "sorted t2" by simp_all
ultimately show ?thesis by (simp add: lookup_keys)
qed
lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))"
proof (induct t)
case Empty then show ?case by simp
next
case (Branch color t1 a b t2)
let ?A = "Set.insert a (dom (lookup t1) \<union> dom (lookup t2))"
have "dom (lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: split_if_asm)
moreover from Branch have "finite (insert a (dom (lookup t1) \<union> dom (lookup t2)))" by simp
ultimately show ?case by (rule finite_subset)
qed
lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None"
by (induct t) auto
lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
by (induct t) auto
lemma lookup_Empty: "lookup Empty = empty"
by (rule ext) simp
lemma map_of_entries:
"sorted t \<Longrightarrow> map_of (entries t) = lookup t"
proof (induct t)
case Empty thus ?case by (simp add: lookup_Empty)
next
case (Branch c t1 k v t2)
have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\<mapsto>v] ++ lookup t1"
proof (rule ext)
fix x
from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp
let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \<mapsto> v] ++ lookup t1) x"
have DOM_T1: "!!k'. k'\<in>dom (lookup t1) \<Longrightarrow> k>k'"
proof -
fix k'
from SORTED have "t1 |\<guillemotleft> k" by simp
with tree_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto
moreover assume "k'\<in>dom (lookup t1)"
ultimately show "k>k'" using lookup_keys SORTED by auto
qed
have DOM_T2: "!!k'. k'\<in>dom (lookup t2) \<Longrightarrow> k<k'"
proof -
fix k'
from SORTED have "k \<guillemotleft>| t2" by simp
with tree_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto
moreover assume "k'\<in>dom (lookup t2)"
ultimately show "k<k'" using lookup_keys SORTED by auto
qed
{
assume C: "x<k"
hence "lookup (Branch c t1 k v t2) x = lookup t1 x" by simp
moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
moreover have "x\<notin>dom (lookup t2)" proof
assume "x\<in>dom (lookup t2)"
with DOM_T2 have "k<x" by blast
with C show False by simp
qed
ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
} moreover {
assume [simp]: "x=k"
hence "lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
moreover have "x\<notin>dom (lookup t1)" proof
assume "x\<in>dom (lookup t1)"
with DOM_T1 have "k>x" by blast
thus False by simp
qed
ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
} moreover {
assume C: "x>k"
hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x])
moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
moreover have "x\<notin>dom (lookup t1)" proof
assume "x\<in>dom (lookup t1)"
with DOM_T1 have "k>x" by simp
with C show False by simp
qed
ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
} ultimately show ?thesis using less_linear by blast
qed
also from Branch have "lookup t2 ++ [k \<mapsto> v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp
finally show ?case by simp
qed
lemma lookup_in_tree: "sorted t \<Longrightarrow> lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)"
by (simp add: map_of_entries [symmetric] distinct_entries)
lemma set_entries_inject:
assumes sorted: "sorted t1" "sorted t2"
shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2"
proof -
from sorted have "distinct (map fst (entries t1))"
"distinct (map fst (entries t2))"
by (auto intro: distinct_entries)
with sorted show ?thesis
by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map)
qed
lemma entries_eqI:
assumes sorted: "sorted t1" "sorted t2"
assumes lookup: "lookup t1 = lookup t2"
shows "entries t1 = entries t2"
proof -
from sorted lookup have "map_of (entries t1) = map_of (entries t2)"
by (simp add: map_of_entries)
with sorted have "set (entries t1) = set (entries t2)"
by (simp add: map_of_inject_set distinct_entries)
with sorted show ?thesis by (simp add: set_entries_inject)
qed
lemma entries_lookup:
assumes "sorted t1" "sorted t2"
shows "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric])
lemma lookup_from_in_tree:
assumes "sorted t1" "sorted t2"
and "\<And>v. (k\<Colon>'a\<Colon>linorder, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)"
shows "lookup t1 k = lookup t2 k"
proof -
from assms have "k \<in> dom (lookup t1) \<longleftrightarrow> k \<in> dom (lookup t2)"
by (simp add: keys_entries lookup_keys)
with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric])
qed
subsubsection {* Red-black properties *}
primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
where
"color_of Empty = B"
| "color_of (Branch c _ _ _ _) = c"
primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
where
"bheight Empty = 0"
| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
where
"inv1 Empty = True"
| "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
where
"inv1l Empty = True"
| "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
where
"inv2 Empty = True"
| "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
"is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
lemma is_rbt_sorted [simp]:
"is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
theorem Empty_is_rbt [simp]:
"is_rbt Empty" by (simp add: is_rbt_def)
subsection {* Insertion *}
fun (* slow, due to massive case splitting *)
balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
"balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
"balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
"balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
"balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
"balance a s t b = Branch B a s t b"
lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)"
by (induct l k v r rule: balance.induct) auto
lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
by (induct l k v r rule: balance.induct) auto
lemma balance_inv2:
assumes "inv2 l" "inv2 r" "bheight l = bheight r"
shows "inv2 (balance l k v r)"
using assms
by (induct l k v r rule: balance.induct) auto
lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)"
by (induct a k x b rule: balance.induct) auto
lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
by (induct a k x b rule: balance.induct) auto
lemma balance_sorted:
fixes k :: "'a::linorder"
assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
shows "sorted (balance l k v r)"
using assms proof (induct l k v r rule: balance.induct)
case ("2_2" a x w b y t c z s va vb vd vc)
hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc"
by (auto simp add: tree_ord_props)
hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
with "2_2" show ?case by simp
next
case ("3_2" va vb vd vc x w b y s c z)
from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)"
by simp
hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
with "3_2" show ?case by simp
next
case ("3_3" x w b y s c z t va vb vd vc)
from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
with "3_3" show ?case by simp
next
case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
with 1 "3_4" show ?case by simp
next
case ("4_2" va vb vd vc x w b y s c z t dd)
hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
with "4_2" show ?case by simp
next
case ("5_2" x w b y s c z t va vb vd vc)
hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
with "5_2" show ?case by simp
next
case ("5_3" va vb vd vc x w b y s c z t)
hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
with "5_3" show ?case by simp
next
case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
with 1 "5_4" show ?case by simp
qed simp+
lemma entries_balance [simp]:
"entries (balance l k v r) = entries l @ (k, v) # entries r"
by (induct l k v r rule: balance.induct) auto
lemma keys_balance [simp]:
"keys (balance l k v r) = keys l @ k # keys r"
by (simp add: keys_def)
lemma balance_in_tree:
"entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r"
by (auto simp add: keys_def)
lemma lookup_balance[simp]:
fixes k :: "'a::linorder"
assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted)
primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"paint c Empty = Empty"
| "paint c (Branch _ l k v r) = Branch c l k v r"
lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
fun
ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"ins f k v Empty = Branch R Empty k v Empty" |
"ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
else if k > x then balance l x y (ins f k v r)
else Branch B l x (f k y v) r)" |
"ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
else if k > x then Branch R l x y (ins f k v r)
else Branch R l x (f k y v) r)"
lemma ins_inv1_inv2:
assumes "inv1 t" "inv2 t"
shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t"
"color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
using assms
by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
by (induct f k x t rule: ins.induct) auto
lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
by (induct f k x t rule: ins.induct) auto
lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
lemma keys_ins: "set (keys (ins f k v t)) = { k } \<union> set (keys t)"
by (induct f k v t rule: ins.induct) auto
lemma lookup_ins:
fixes k :: "'a::linorder"
assumes "sorted t"
shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v
| Some w \<Rightarrow> f k w v)) x"
using assms by (induct f k v t rule: ins.induct) auto
definition
insert_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"insert_with_key f k v t = paint B (ins f k v t)"
lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insert_with_key f k x t)"
by (auto simp: insert_with_key_def)
theorem insertwk_is_rbt:
assumes inv: "is_rbt t"
shows "is_rbt (insert_with_key f k x t)"
using assms
unfolding insert_with_key_def is_rbt_def
by (auto simp: ins_inv1_inv2)
lemma lookup_insertwk:
assumes "sorted t"
shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v
| Some w \<Rightarrow> f k w v)) x"
unfolding insert_with_key_def using assms
by (simp add:lookup_ins)
definition
insertw_def: "insert_with f = insert_with_key (\<lambda>_. f)"
lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def)
theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def)
lemma lookup_insertw:
assumes "is_rbt t"
shows "lookup (insert_with f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
using assms
unfolding insertw_def
by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"insert = insert_with_key (\<lambda>_ _ nv. nv)"
lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
theorem insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
lemma lookup_insert:
assumes "is_rbt t"
shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
unfolding insert_def
using assms
by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
subsection {* Deletion *}
lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
by (cases t rule: rbt_cases) auto
fun
balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
"balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
"balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
"balance_left t k x s = Empty"
lemma balance_left_inv2_with_inv1:
assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
shows "bheight (balance_left lt k v rt) = bheight lt + 1"
and "inv2 (balance_left lt k v rt)"
using assms
by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight)
lemma balance_left_inv2_app:
assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
shows "inv2 (balance_left lt k v rt)"
"bheight (balance_left lt k v rt) = bheight rt"
using assms
by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+
lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)"
by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+
lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)"
by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1)
lemma balance_left_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_left l k v r)"
apply (induct l k v r rule: balance_left.induct)
apply (auto simp: balance_sorted)
apply (unfold tree_greater_prop tree_less_prop)
by force+
lemma balance_left_tree_greater:
fixes k :: "'a::order"
assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x"
shows "k \<guillemotleft>| balance_left a x t b"
using assms
by (induct a x t b rule: balance_left.induct) auto
lemma balance_left_tree_less:
fixes k :: "'a::order"
assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k"
shows "balance_left a x t b |\<guillemotleft> k"
using assms
by (induct a x t b rule: balance_left.induct) auto
lemma balance_left_in_tree:
assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
using assms
by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree)
fun
balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
"balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
"balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
"balance_right t k x s = Empty"
lemma balance_right_inv2_with_inv1:
assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt"
using assms
by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight)
lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)"
by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+
lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)"
by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1)
lemma balance_right_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_right l k v r)"
apply (induct l k v r rule: balance_right.induct)
apply (auto simp:balance_sorted)
apply (unfold tree_less_prop tree_greater_prop)
by force+
lemma balance_right_tree_greater:
fixes k :: "'a::order"
assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x"
shows "k \<guillemotleft>| balance_right a x t b"
using assms by (induct a x t b rule: balance_right.induct) auto
lemma balance_right_tree_less:
fixes k :: "'a::order"
assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k"
shows "balance_right a x t b |\<guillemotleft> k"
using assms by (induct a x t b rule: balance_right.induct) auto
lemma balance_right_in_tree:
assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree)
fun
combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"combine Empty x = x"
| "combine x Empty = x"
| "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of
Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
bc \<Rightarrow> Branch R a k x (Branch R bc s y d))"
| "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of
Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
bc \<Rightarrow> balance_left a k x (Branch B bc s y d))"
| "combine a (Branch R b k x c) = Branch R (combine a b) k x c"
| "combine (Branch R a k x b) c = Branch R a k x (combine b c)"
lemma combine_inv2:
assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)"
using assms
by (induct lt rt rule: combine.induct)
(auto simp: balance_left_inv2_app split: rbt.splits color.splits)
lemma combine_inv1:
assumes "inv1 lt" "inv1 rt"
shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)"
"inv1l (combine lt rt)"
using assms
by (induct lt rt rule: combine.induct)
(auto simp: balance_left_inv1 split: rbt.splits color.splits)
lemma combine_tree_greater[simp]:
fixes k :: "'a::linorder"
assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r"
shows "k \<guillemotleft>| combine l r"
using assms
by (induct l r rule: combine.induct)
(auto simp: balance_left_tree_greater split:rbt.splits color.splits)
lemma combine_tree_less[simp]:
fixes k :: "'a::linorder"
assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k"
shows "combine l r |\<guillemotleft> k"
using assms
by (induct l r rule: combine.induct)
(auto simp: balance_left_tree_less split:rbt.splits color.splits)
lemma combine_sorted:
fixes k :: "'a::linorder"
assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
shows "sorted (combine l r)"
using assms proof (induct l r rule: combine.induct)
case (3 a x v b c y w d)
hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
by auto
with 3
show ?case
by (cases "combine b c" rule: rbt_cases)
(auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+)
next
case (4 a x v b c y w d)
hence "x < k \<and> tree_greater k c" by simp
hence "tree_greater x c" by (blast dest: tree_greater_trans)
with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater)
from 4 have "k < y \<and> tree_less k b" by simp
hence "tree_less y b" by (blast dest: tree_less_trans)
with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less)
show ?case
proof (cases "combine b c" rule: rbt_cases)
case Empty
from 4 have "x < y \<and> tree_greater y d" by auto
hence "tree_greater x d" by (blast dest: tree_greater_trans)
with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
with Empty show ?thesis by (simp add: balance_left_sorted)
next
case (Red lta va ka rta)
with 2 4 have "x < va \<and> tree_less x a" by simp
hence 5: "tree_less va a" by (blast dest: tree_less_trans)
from Red 3 4 have "va < y \<and> tree_greater y d" by simp
hence "tree_greater va d" by (blast dest: tree_greater_trans)
with Red 2 3 4 5 show ?thesis by simp
next
case (Black lta va ka rta)
from 4 have "x < y \<and> tree_greater y d" by auto
hence "tree_greater x d" by (blast dest: tree_greater_trans)
with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto
with Black show ?thesis by (simp add: balance_left_sorted)
qed
next
case (5 va vb vd vc b x w c)
hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
with 5 show ?case by (simp add: combine_tree_less)
next
case (6 a x v b va vb vd vc)
hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
with 6 show ?case by (simp add: combine_tree_greater)
qed simp+
lemma combine_in_tree:
assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
using assms
proof (induct l r rule: combine.induct)
case (4 _ _ _ b c)
hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2)
from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1)
show ?case
proof (cases "combine b c" rule: rbt_cases)
case Empty
with 4 a show ?thesis by (auto simp: balance_left_in_tree)
next
case (Red lta ka va rta)
with 4 show ?thesis by auto
next
case (Black lta ka va rta)
with a b 4 show ?thesis by (auto simp: balance_left_in_tree)
qed
qed (auto split: rbt.splits color.splits)
fun
del_from_left :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
del_from_right :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"del x Empty = Empty" |
"del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" |
"del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" |
"del_from_left x a y s b = Branch R (del x a) y s b" |
"del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" |
"del_from_right x a y s b = Branch R a y s (del x b)"
lemma
assumes "inv2 lt" "inv1 lt"
shows
"\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
inv2 (del_from_left x lt k v rt) \<and> bheight (del_from_left x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_left x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_left x lt k v rt))"
and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
inv2 (del_from_right x lt k v rt) \<and> bheight (del_from_right x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_right x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_right x lt k v rt))"
and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt)
\<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
using assms
proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct)
case (2 y c _ y')
have "y = y' \<or> y < y' \<or> y > y'" by auto
thus ?case proof (elim disjE)
assume "y = y'"
with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+
next
assume "y < y'"
with 2 show ?thesis by (cases c) auto
next
assume "y' < y"
with 2 show ?thesis by (cases c) auto
qed
next
case (3 y lt z v rta y' ss bb)
thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+
next
case (5 y a y' ss lt z v rta)
thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+
next
case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
qed auto
lemma
del_from_left_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_left x lt k y rt)"
and del_from_right_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_right x lt k y rt)"
and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
(auto simp: balance_left_tree_less balance_right_tree_less)
lemma del_from_left_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_left x lt k y rt)"
and del_from_right_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_right x lt k y rt)"
and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
(auto simp: balance_left_tree_greater balance_right_tree_greater)
lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_left x lt k y rt)"
and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_right x lt k y rt)"
and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
case (3 x lta zz v rta yy ss bb)
from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
with 3 show ?case by (simp add: balance_left_sorted)
next
case ("4_2" x vaa vbb vdd vc yy ss bb)
hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
with "4_2" show ?case by simp
next
case (5 x aa yy ss lta zz v rta)
hence "tree_greater yy (Branch B lta zz v rta)" by simp
hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
with 5 show ?case by (simp add: balance_right_sorted)
next
case ("6_2" x aa yy ss vaa vbb vdd vc)
hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
with "6_2" show ?case by simp
qed (auto simp: combine_sorted)
lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
and del_in_tree: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct)
case (2 xx c aa yy ss bb)
have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
from this 2 show ?case proof (elim disjE)
assume "xx = yy"
with 2 show ?thesis proof (cases "xx = k")
case True
from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree)
qed (simp add: combine_in_tree)
qed simp+
next
case (3 xx lta zz vv rta yy ss bb)
def mt[simp]: mt == "Branch B lta zz vv rta"
from 3 have "inv2 mt \<and> inv1 mt" by simp
hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree)
thus ?case proof (cases "xx = k")
case True
from 3 True have "tree_greater yy bb \<and> yy > k" by simp
hence "tree_greater k bb" by (blast dest: tree_greater_trans)
with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
qed auto
next
case ("4_1" xx yy ss bb)
show ?case proof (cases "xx = k")
case True
with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
hence "tree_greater k bb" by (blast dest: tree_greater_trans)
with "4_1" `xx = k`
have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
thus ?thesis by auto
qed simp+
next
case ("4_2" xx vaa vbb vdd vc yy ss bb)
thus ?case proof (cases "xx = k")
case True
with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
hence "tree_greater k bb" by (blast dest: tree_greater_trans)
with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
qed auto
next
case (5 xx aa yy ss lta zz vv rta)
def mt[simp]: mt == "Branch B lta zz vv rta"
from 5 have "inv2 mt \<and> inv1 mt" by simp
hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree)
thus ?case proof (cases "xx = k")
case True
from 5 True have "tree_less yy aa \<and> yy < k" by simp
hence "tree_less k aa" by (blast dest: tree_less_trans)
with 3 5 True show ?thesis by (auto simp: tree_less_nit)
qed auto
next
case ("6_1" xx aa yy ss)
show ?case proof (cases "xx = k")
case True
with "6_1" have "tree_less yy aa \<and> k > yy" by simp
hence "tree_less k aa" by (blast dest: tree_less_trans)
with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
qed simp
next
case ("6_2" xx aa yy ss vaa vbb vdd vc)
thus ?case proof (cases "xx = k")
case True
with "6_2" have "k > yy \<and> tree_less yy aa" by simp
hence "tree_less k aa" by (blast dest: tree_less_trans)
with True "6_2" show ?thesis by (auto simp: tree_less_nit)
qed auto
qed simp
definition delete where
delete_def: "delete k t = paint B (del k t)"
theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
proof -
from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto
hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
with assms show ?thesis
unfolding is_rbt_def delete_def
by (auto intro: paint_sorted del_sorted)
qed
lemma delete_in_tree:
assumes "is_rbt t"
shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
using assms unfolding is_rbt_def delete_def
by (auto simp: del_in_tree)
lemma lookup_delete:
assumes is_rbt: "is_rbt t"
shows "lookup (delete k t) = (lookup t)|`(-{k})"
proof
fix x
show "lookup (delete k t) x = (lookup t |` (-{k})) x"
proof (cases "x = k")
assume "x = k"
with is_rbt show ?thesis
by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree)
next
assume "x \<noteq> k"
thus ?thesis
by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree)
qed
qed
subsection {* Union *}
primrec
union_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
where
"union_with_key f t Empty = t"
| "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt"
lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (union_with_key f lt rt)"
by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (union_with_key f lt rt)"
by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
definition
union_with where
"union_with f = union_with_key (\<lambda>_. f)"
theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union_with f lt rt)" unfolding union_with_def by simp
definition union where
"union = union_with_key (%_ _ rv. rv)"
theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
lemma union_Branch[simp]:
"union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
unfolding union_def insert_def
by simp
lemma lookup_union:
assumes "is_rbt s" "sorted t"
shows "lookup (union s t) = lookup s ++ lookup t"
using assms
proof (induct t arbitrary: s)
case Empty thus ?case by (auto simp: union_def)
next
case (Branch c l k v r s)
then have "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
lookup s ++
(\<lambda>a. if a < k then lookup l a
else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
proof (rule ext)
fix a
have "k < a \<or> k = a \<or> k > a" by auto
thus "?m1 a = ?m2 a"
proof (elim disjE)
assume "k < a"
with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
with `k < a` show ?thesis
by (auto simp: map_add_def split: option.splits)
next
assume "k = a"
with `l |\<guillemotleft> k` `k \<guillemotleft>| r`
show ?thesis by (auto simp: map_add_def)
next
assume "a < k"
from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
with `a < k` show ?thesis
by (auto simp: map_add_def split: option.splits)
qed
qed
from Branch have is_rbt: "is_rbt (RBT_Impl.union (RBT_Impl.insert k v s) l)"
by (auto intro: union_is_rbt insert_is_rbt)
with Branch have IHs:
"lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
"lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
by auto
with meq show ?case
by (auto simp: lookup_insert[OF Branch(3)])
qed
subsection {* Modifying existing entries *}
primrec
map_entry :: "'a\<Colon>linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
where
"map_entry k f Empty = Empty"
| "map_entry k f (Branch c lt x v rt) =
(if k < x then Branch c (map_entry k f lt) x v rt
else if k > x then (Branch c lt x v (map_entry k f rt))
else Branch c lt x (f v) rt)"
lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+
lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+
lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+
lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+
lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+
lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t"
by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater)
theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t"
unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 )
theorem lookup_map_entry:
"lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
by (induct t) (auto split: option.splits simp add: expand_fun_eq)
subsection {* Mapping all entries *}
primrec
map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
where
"map f Empty = Empty"
| "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)"
lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)"
by (induct t) auto
lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def)
lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+
lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+
lemma map_sorted: "sorted (map f t) = sorted t" by (induct t) (simp add: map_tree_less map_tree_greater)+
lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+
lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+
lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+
theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t"
unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of)
theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)"
by (induct t) auto
subsection {* Folding over entries *}
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
"fold f t = More_List.fold (prod_case f) (entries t)"
lemma fold_simps [simp, code]:
"fold f Empty = id"
"fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt"
by (simp_all add: fold_def expand_fun_eq)
subsection {* Bulkloading a tree *}
definition bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a\<Colon>linorder, 'b) rbt" where
"bulkload xs = foldr (\<lambda>(k, v). insert k v) xs Empty"
lemma bulkload_is_rbt [simp, intro]:
"is_rbt (bulkload xs)"
unfolding bulkload_def by (induct xs) auto
lemma lookup_bulkload:
"lookup (bulkload xs) = map_of xs"
proof -
obtain ys where "ys = rev xs" by simp
have "\<And>t. is_rbt t \<Longrightarrow>
lookup (More_List.fold (prod_case insert) ys t) = lookup t ++ map_of (rev ys)"
by (induct ys) (simp_all add: bulkload_def lookup_insert prod_case_beta)
from this Empty_is_rbt have
"lookup (More_List.fold (prod_case insert) (rev xs) Empty) = lookup Empty ++ map_of xs"
by (simp add: `ys = rev xs`)
then show ?thesis by (simp add: bulkload_def lookup_Empty foldr_fold_rev)
qed
hide_const (open) Empty insert delete entries keys bulkload lookup map_entry map fold union sorted
end