(*  Title:      HOL/IOA/NTP/Lemmas.thy
    Author:     Tobias Nipkow & Konrad Slind
*)
theory Lemmas
imports Main
begin
subsubsection {* Logic *}
lemma neg_flip: "(X = (~ Y)) = ((~X) = Y)"
  by blast
subsection {* Sets *}
lemma set_lemmas:
  "f(x) : (UN x. {f(x)})"
  "f x y : (UN x y. {f x y})"
  "!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})"
  "!!a. (!x y. a ~= f x y) ==> a ~: (UN x y. {f x y})"
  by auto
subsection {* Arithmetic *}
lemma pred_suc: "0<x ==> (x - 1 = y) = (x = Suc(y))"
  by (simp add: diff_Suc split add: nat.split)
lemmas [simp] = hd_append set_lemmas
end