doc-src/TutorialI/Inductive/Advanced.thy
author nipkow
Fri, 01 Dec 2000 12:15:47 +0100
changeset 10560 f4da791d4850
parent 10468 87dda999deca
child 10882 ca41ba5fb8e2
permissions -rw-r--r--
*** empty log message ***

(* ID:         $Id$ *)
theory Advanced = Even:


datatype 'f gterm = Apply 'f "'f gterm list"

datatype integer_op = Number int | UnaryMinus | Plus;

consts gterms :: "'f set \<Rightarrow> 'f gterm set"
inductive "gterms F"
intros
step[intro!]: "\<lbrakk>\<forall>t \<in> set args. t \<in> gterms F;  f \<in> F\<rbrakk>
               \<Longrightarrow> (Apply f args) \<in> gterms F"

lemma gterms_mono: "F\<subseteq>G \<Longrightarrow> gterms F \<subseteq> gterms G"
apply clarify
apply (erule gterms.induct)
apply blast
done

text{*
The situation after induction

proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
F\ {\isasymsubseteq}\ G\ {\isasymLongrightarrow}\ gterms\ F\ {\isasymsubseteq}\ gterms\ G\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}F\ {\isasymsubseteq}\ G{\isacharsemicolon}\ {\isasymforall}t{\isasymin}set\ args{\isachardot}\ t\ {\isasymin}\ gterms\ F\ {\isasymand}\ t\ {\isasymin}\ gterms\ G{\isacharsemicolon}\ f\ {\isasymin}\ F{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ G
*}

text{* We completely forgot about "rule inversion". 

@{thm[display] even.cases[no_vars]}
\rulename{even.cases}

Just as a demo I include
the two forms that Markus has made available. First the one for binding the
result to a name 

*}

inductive_cases Suc_Suc_cases [elim!]:
  "Suc(Suc n) \<in> even"

thm Suc_Suc_cases;

text{*
@{thm[display] Suc_Suc_cases[no_vars]}
\rulename{Suc_Suc_cases}

and now the one for local usage:
*}

lemma "Suc(Suc n) \<in> even \<Longrightarrow> P n";
apply (ind_cases "Suc(Suc n) \<in> even");
oops

inductive_cases gterm_Apply_elim [elim!]: "Apply f args \<in> gterms F"

text{*this is what we get:

@{thm[display] gterm_Apply_elim[no_vars]}
\rulename{gterm_Apply_elim}
*}

lemma gterms_IntI [rule_format]:
     "t \<in> gterms F \<Longrightarrow> t \<in> gterms G \<longrightarrow> t \<in> gterms (F\<inter>G)"
apply (erule gterms.induct)
apply blast
done


text{*
Subgoal after induction.  How would we cope without rule inversion?

pr(latex xsymbols symbols)

proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma\ gterms{\isacharunderscore}IntI{\isacharparenright}{\isacharcolon}\isanewline
t\ {\isasymin}\ gterms\ F\ {\isasymLongrightarrow}\ t\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ t\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\ t\ {\isasymin}\ gterms\ F\ {\isasymand}\ {\isacharparenleft}t\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ t\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}{\isacharparenright}{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ f\ {\isasymin}\ F{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}


*}

text{*
@{thm[display] mono_Int[no_vars]}
\rulename{mono_Int}
*}

lemma gterms_Int_eq [simp]:
     "gterms (F\<inter>G) = gterms F \<inter> gterms G"
apply (rule equalityI)
apply (blast intro!: mono_Int monoI gterms_mono)
apply (blast intro!: gterms_IntI)
done


consts integer_arity :: "integer_op \<Rightarrow> nat"
primrec
"integer_arity (Number n)        = #0"
"integer_arity UnaryMinus        = #1"
"integer_arity Plus              = #2"

consts well_formed_gterm :: "('f \<Rightarrow> nat) \<Rightarrow> 'f gterm set"
inductive "well_formed_gterm arity"
intros
step[intro!]: "\<lbrakk>\<forall>t \<in> set args. t \<in> well_formed_gterm arity;  
                length args = arity f\<rbrakk>
               \<Longrightarrow> (Apply f args) \<in> well_formed_gterm arity"


consts well_formed_gterm' :: "('f \<Rightarrow> nat) \<Rightarrow> 'f gterm set"
inductive "well_formed_gterm' arity"
intros
step[intro!]: "\<lbrakk>args \<in> lists (well_formed_gterm' arity);  
                length args = arity f\<rbrakk>
               \<Longrightarrow> (Apply f args) \<in> well_formed_gterm' arity"
monos lists_mono

lemma "well_formed_gterm arity \<subseteq> well_formed_gterm' arity"
apply clarify
apply (erule well_formed_gterm.induct)
apply auto
done


text{*
The situation after clarify (note the induction hypothesis!)

pr(latex xsymbols symbols)

proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\ {\isasymsubseteq}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\isanewline
\ \ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\ {\isasymand}\ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity
*}


lemma "well_formed_gterm' arity \<subseteq> well_formed_gterm arity"
apply clarify
apply (erule well_formed_gterm'.induct)
apply auto
done


text{*
@{thm[display] lists_Int_eq[no_vars]}
\rulename{lists_Int_eq}

The situation after clarify (note the strange induction hypothesis!)

pr(latex xsymbols symbols)

proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\ {\isasymsubseteq}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}args\isanewline
\ \ \ \ \ \ \ \ {\isasymin}\ lists\isanewline
\ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\ {\isasyminter}\ {\isacharbraceleft}u{\isachardot}\ u\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity{\isacharbraceright}{\isacharparenright}{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity
*}

text{* the rest isn't used: too complicated.  OK for an exercise though.*}

consts integer_signature :: "(integer_op * (unit list * unit)) set"
inductive "integer_signature"
intros
Number:     "(Number n,   ([], ())) \<in> integer_signature"
UnaryMinus: "(UnaryMinus, ([()], ())) \<in> integer_signature"
Plus:       "(Plus,       ([(),()], ())) \<in> integer_signature"


consts well_typed_gterm :: "('f \<Rightarrow> 't list * 't) \<Rightarrow> ('f gterm * 't)set"
inductive "well_typed_gterm sig"
intros
step[intro!]: 
    "\<lbrakk>\<forall>pair \<in> set args. pair \<in> well_typed_gterm sig; 
      sig f = (map snd args, rtype)\<rbrakk>
     \<Longrightarrow> (Apply f (map fst args), rtype) 
         \<in> well_typed_gterm sig"

consts well_typed_gterm' :: "('f \<Rightarrow> 't list * 't) \<Rightarrow> ('f gterm * 't)set"
inductive "well_typed_gterm' sig"
intros
step[intro!]: 
    "\<lbrakk>args \<in> lists(well_typed_gterm' sig); 
      sig f = (map snd args, rtype)\<rbrakk>
     \<Longrightarrow> (Apply f (map fst args), rtype) 
         \<in> well_typed_gterm' sig"
monos lists_mono


lemma "well_typed_gterm sig \<subseteq> well_typed_gterm' sig"
apply clarify
apply (erule well_typed_gterm.induct)
apply auto
done

lemma "well_typed_gterm' sig \<subseteq> well_typed_gterm sig"
apply clarify
apply (erule well_typed_gterm'.induct)
apply auto
done


end