(* ID: $Id$ *)
theory Advanced = Even:
datatype 'f gterm = Apply 'f "'f gterm list"
datatype integer_op = Number int | UnaryMinus | Plus;
consts gterms :: "'f set \<Rightarrow> 'f gterm set"
inductive "gterms F"
intros
step[intro!]: "\<lbrakk>\<forall>t \<in> set args. t \<in> gterms F; f \<in> F\<rbrakk>
\<Longrightarrow> (Apply f args) \<in> gterms F"
lemma gterms_mono: "F\<subseteq>G \<Longrightarrow> gterms F \<subseteq> gterms G"
apply clarify
apply (erule gterms.induct)
apply blast
done
text{*
The situation after induction
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
F\ {\isasymsubseteq}\ G\ {\isasymLongrightarrow}\ gterms\ F\ {\isasymsubseteq}\ gterms\ G\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}F\ {\isasymsubseteq}\ G{\isacharsemicolon}\ {\isasymforall}t{\isasymin}set\ args{\isachardot}\ t\ {\isasymin}\ gterms\ F\ {\isasymand}\ t\ {\isasymin}\ gterms\ G{\isacharsemicolon}\ f\ {\isasymin}\ F{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ G
*}
text{* We completely forgot about "rule inversion".
@{thm[display] even.cases[no_vars]}
\rulename{even.cases}
Just as a demo I include
the two forms that Markus has made available. First the one for binding the
result to a name
*}
inductive_cases Suc_Suc_cases [elim!]:
"Suc(Suc n) \<in> even"
thm Suc_Suc_cases;
text{*
@{thm[display] Suc_Suc_cases[no_vars]}
\rulename{Suc_Suc_cases}
and now the one for local usage:
*}
lemma "Suc(Suc n) \<in> even \<Longrightarrow> P n";
apply (ind_cases "Suc(Suc n) \<in> even");
oops
inductive_cases gterm_Apply_elim [elim!]: "Apply f args \<in> gterms F"
text{*this is what we get:
@{thm[display] gterm_Apply_elim[no_vars]}
\rulename{gterm_Apply_elim}
*}
lemma gterms_IntI [rule_format]:
"t \<in> gterms F \<Longrightarrow> t \<in> gterms G \<longrightarrow> t \<in> gterms (F\<inter>G)"
apply (erule gterms.induct)
apply blast
done
text{*
Subgoal after induction. How would we cope without rule inversion?
pr(latex xsymbols symbols)
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma\ gterms{\isacharunderscore}IntI{\isacharparenright}{\isacharcolon}\isanewline
t\ {\isasymin}\ gterms\ F\ {\isasymLongrightarrow}\ t\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ t\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\ t\ {\isasymin}\ gterms\ F\ {\isasymand}\ {\isacharparenleft}t\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ t\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}{\isacharparenright}{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ f\ {\isasymin}\ F{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ G\ {\isasymlongrightarrow}\ Apply\ f\ args\ {\isasymin}\ gterms\ {\isacharparenleft}F\ {\isasyminter}\ G{\isacharparenright}
*}
text{*
@{thm[display] mono_Int[no_vars]}
\rulename{mono_Int}
*}
lemma gterms_Int_eq [simp]:
"gterms (F\<inter>G) = gterms F \<inter> gterms G"
apply (rule equalityI)
apply (blast intro!: mono_Int monoI gterms_mono)
apply (blast intro!: gterms_IntI)
done
consts integer_arity :: "integer_op \<Rightarrow> nat"
primrec
"integer_arity (Number n) = #0"
"integer_arity UnaryMinus = #1"
"integer_arity Plus = #2"
consts well_formed_gterm :: "('f \<Rightarrow> nat) \<Rightarrow> 'f gterm set"
inductive "well_formed_gterm arity"
intros
step[intro!]: "\<lbrakk>\<forall>t \<in> set args. t \<in> well_formed_gterm arity;
length args = arity f\<rbrakk>
\<Longrightarrow> (Apply f args) \<in> well_formed_gterm arity"
consts well_formed_gterm' :: "('f \<Rightarrow> nat) \<Rightarrow> 'f gterm set"
inductive "well_formed_gterm' arity"
intros
step[intro!]: "\<lbrakk>args \<in> lists (well_formed_gterm' arity);
length args = arity f\<rbrakk>
\<Longrightarrow> (Apply f args) \<in> well_formed_gterm' arity"
monos lists_mono
lemma "well_formed_gterm arity \<subseteq> well_formed_gterm' arity"
apply clarify
apply (erule well_formed_gterm.induct)
apply auto
done
text{*
The situation after clarify (note the induction hypothesis!)
pr(latex xsymbols symbols)
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\ {\isasymsubseteq}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}t{\isasymin}set\ args{\isachardot}\isanewline
\ \ \ \ \ \ \ \ \ \ \ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\ {\isasymand}\ t\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity
*}
lemma "well_formed_gterm' arity \<subseteq> well_formed_gterm arity"
apply clarify
apply (erule well_formed_gterm'.induct)
apply auto
done
text{*
@{thm[display] lists_Int_eq[no_vars]}
\rulename{lists_Int_eq}
The situation after clarify (note the strange induction hypothesis!)
pr(latex xsymbols symbols)
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{2}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\ {\isasymsubseteq}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ args\ f{\isachardot}\isanewline
\ \ \ \ \ \ \ {\isasymlbrakk}args\isanewline
\ \ \ \ \ \ \ \ {\isasymin}\ lists\isanewline
\ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}well{\isacharunderscore}formed{\isacharunderscore}gterm{\isacharprime}\ arity\ {\isasyminter}\ {\isacharbraceleft}u{\isachardot}\ u\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity{\isacharbraceright}{\isacharparenright}{\isacharsemicolon}\isanewline
\ \ \ \ \ \ \ \ \ \ length\ args\ {\isacharequal}\ arity\ f{\isasymrbrakk}\isanewline
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ Apply\ f\ args\ {\isasymin}\ well{\isacharunderscore}formed{\isacharunderscore}gterm\ arity
*}
text{* the rest isn't used: too complicated. OK for an exercise though.*}
consts integer_signature :: "(integer_op * (unit list * unit)) set"
inductive "integer_signature"
intros
Number: "(Number n, ([], ())) \<in> integer_signature"
UnaryMinus: "(UnaryMinus, ([()], ())) \<in> integer_signature"
Plus: "(Plus, ([(),()], ())) \<in> integer_signature"
consts well_typed_gterm :: "('f \<Rightarrow> 't list * 't) \<Rightarrow> ('f gterm * 't)set"
inductive "well_typed_gterm sig"
intros
step[intro!]:
"\<lbrakk>\<forall>pair \<in> set args. pair \<in> well_typed_gterm sig;
sig f = (map snd args, rtype)\<rbrakk>
\<Longrightarrow> (Apply f (map fst args), rtype)
\<in> well_typed_gterm sig"
consts well_typed_gterm' :: "('f \<Rightarrow> 't list * 't) \<Rightarrow> ('f gterm * 't)set"
inductive "well_typed_gterm' sig"
intros
step[intro!]:
"\<lbrakk>args \<in> lists(well_typed_gterm' sig);
sig f = (map snd args, rtype)\<rbrakk>
\<Longrightarrow> (Apply f (map fst args), rtype)
\<in> well_typed_gterm' sig"
monos lists_mono
lemma "well_typed_gterm sig \<subseteq> well_typed_gterm' sig"
apply clarify
apply (erule well_typed_gterm.induct)
apply auto
done
lemma "well_typed_gterm' sig \<subseteq> well_typed_gterm sig"
apply clarify
apply (erule well_typed_gterm'.induct)
apply auto
done
end