(* Title: ZF/epsilon.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Epsilon induction and recursion
*)
Epsilon = Nat + mono +
constdefs
eclose :: i=>i
"eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))"
transrec :: [i, [i,i]=>i] =>i
"transrec(a,H) == wfrec(Memrel(eclose({a})), a, H)"
rank :: i=>i
"rank(a) == transrec(a, %x f. UN y:x. succ(f`y))"
transrec2 :: [i, i, [i,i]=>i] =>i
"transrec2(k, a, b) ==
transrec(k,
%i r. if(i=0, a,
if(EX j. i=succ(j),
b(THE j. i=succ(j), r`(THE j. i=succ(j))),
UN j<i. r`j)))"
recursor :: [i, [i,i]=>i, i]=>i
"recursor(a,b,k) == transrec(k, %n f. nat_case(a, %m. b(m, f`m), n))"
rec :: [i, i, [i,i]=>i]=>i
"rec(k,a,b) == recursor(a,b,k)"
end