(* Title: ZF/OrderArith.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Towards ordinal arithmetic. Also useful with wfrec.
*)
theory OrderArith = Order + Sum + Ordinal:
constdefs
(*disjoint sum of two relations; underlies ordinal addition*)
radd :: "[i,i,i,i]=>i"
"radd(A,r,B,s) ==
{z: (A+B) * (A+B).
(EX x y. z = <Inl(x), Inr(y)>) |
(EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r) |
(EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
(*lexicographic product of two relations; underlies ordinal multiplication*)
rmult :: "[i,i,i,i]=>i"
"rmult(A,r,B,s) ==
{z: (A*B) * (A*B).
EX x' y' x y. z = <<x',y'>, <x,y>> &
(<x',x>: r | (x'=x & <y',y>: s))}"
(*inverse image of a relation*)
rvimage :: "[i,i,i]=>i"
"rvimage(A,f,r) == {z: A*A. EX x y. z = <x,y> & <f`x,f`y>: r}"
measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i"
"measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
(**** Addition of relations -- disjoint sum ****)
(** Rewrite rules. Can be used to obtain introduction rules **)
lemma radd_Inl_Inr_iff [iff]:
"<Inl(a), Inr(b)> : radd(A,r,B,s) <-> a:A & b:B"
apply (unfold radd_def)
apply blast
done
lemma radd_Inl_iff [iff]:
"<Inl(a'), Inl(a)> : radd(A,r,B,s) <-> a':A & a:A & <a',a>:r"
apply (unfold radd_def)
apply blast
done
lemma radd_Inr_iff [iff]:
"<Inr(b'), Inr(b)> : radd(A,r,B,s) <-> b':B & b:B & <b',b>:s"
apply (unfold radd_def)
apply blast
done
lemma radd_Inr_Inl_iff [iff]:
"<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False"
apply (unfold radd_def)
apply blast
done
(** Elimination Rule **)
lemma raddE:
"[| <p',p> : radd(A,r,B,s);
!!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;
!!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;
!!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q
|] ==> Q"
apply (unfold radd_def)
apply (blast intro: elim:);
done
(** Type checking **)
lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
apply (unfold radd_def)
apply (rule Collect_subset)
done
lemmas field_radd = radd_type [THEN field_rel_subset]
(** Linearity **)
lemma linear_radd:
"[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
apply (unfold linear_def)
apply (blast intro: elim:);
done
(** Well-foundedness **)
lemma wf_on_radd: "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
apply (rule wf_onI2)
apply (subgoal_tac "ALL x:A. Inl (x) : Ba")
(*Proving the lemma, which is needed twice!*)
prefer 2
apply (erule_tac V = "y : A + B" in thin_rl)
apply (rule_tac ballI)
apply (erule_tac r = "r" and a = "x" in wf_on_induct, assumption)
apply (blast intro: elim:);
(*Returning to main part of proof*)
apply safe
apply blast
apply (erule_tac r = "s" and a = "ya" in wf_on_induct , assumption)
apply (blast intro: elim:);
done
lemma wf_radd: "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_radd])
apply (blast intro: wf_on_radd)
done
lemma well_ord_radd:
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_radd)
apply (simp add: well_ord_def tot_ord_def linear_radd)
done
(** An ord_iso congruence law **)
lemma sum_bij:
"[| f: bij(A,C); g: bij(B,D) |]
==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
apply (rule_tac d = "case (%x. Inl (converse (f) `x) , %y. Inr (converse (g) `y))" in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done
lemma sum_ord_iso_cong:
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] ==>
(lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))
: ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: sum_bij)
(*Do the beta-reductions now*)
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type])
done
(*Could we prove an ord_iso result? Perhaps
ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
lemma sum_disjoint_bij: "A Int B = 0 ==>
(lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)"
apply (rule_tac d = "%z. if z:A then Inl (z) else Inr (z) " in lam_bijective)
apply auto
done
(** Associativity **)
lemma sum_assoc_bij:
"(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
: bij((A+B)+C, A+(B+C))"
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))"
in lam_bijective)
apply auto
done
lemma sum_assoc_ord_iso:
"(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
: ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),
A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
apply (rule sum_assoc_bij [THEN ord_isoI])
apply auto
done
(**** Multiplication of relations -- lexicographic product ****)
(** Rewrite rule. Can be used to obtain introduction rules **)
lemma rmult_iff [iff]:
"<<a',b'>, <a,b>> : rmult(A,r,B,s) <->
(<a',a>: r & a':A & a:A & b': B & b: B) |
(<b',b>: s & a'=a & a:A & b': B & b: B)"
apply (unfold rmult_def)
apply blast
done
lemma rmultE:
"[| <<a',b'>, <a,b>> : rmult(A,r,B,s);
[| <a',a>: r; a':A; a:A; b':B; b:B |] ==> Q;
[| <b',b>: s; a:A; a'=a; b':B; b:B |] ==> Q
|] ==> Q"
apply (blast intro: elim:);
done
(** Type checking **)
lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
apply (unfold rmult_def)
apply (rule Collect_subset)
done
lemmas field_rmult = rmult_type [THEN field_rel_subset]
(** Linearity **)
lemma linear_rmult:
"[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
apply (simp add: linear_def);
apply (blast intro: elim:);
done
(** Well-foundedness **)
lemma wf_on_rmult: "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
apply (rule wf_onI2)
apply (erule SigmaE)
apply (erule ssubst)
apply (subgoal_tac "ALL b:B. <x,b>: Ba")
apply blast
apply (erule_tac a = "x" in wf_on_induct , assumption)
apply (rule ballI)
apply (erule_tac a = "b" in wf_on_induct , assumption)
apply (best elim!: rmultE bspec [THEN mp])
done
lemma wf_rmult: "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_rmult])
apply (blast intro: wf_on_rmult)
done
lemma well_ord_rmult:
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_rmult)
apply (simp add: well_ord_def tot_ord_def linear_rmult)
done
(** An ord_iso congruence law **)
lemma prod_bij:
"[| f: bij(A,C); g: bij(B,D) |]
==> (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)"
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>"
in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done
lemma prod_ord_iso_cong:
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |]
==> (lam <x,y>:A*B. <f`x, g`y>)
: ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: prod_bij)
apply (simp_all add: bij_is_fun [THEN apply_type])
apply (blast intro: bij_is_inj [THEN inj_apply_equality])
done
lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
apply (rule_tac d = "snd" in lam_bijective)
apply auto
done
(*Used??*)
lemma singleton_prod_ord_iso:
"well_ord({x},xr) ==>
(lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
apply (rule singleton_prod_bij [THEN ord_isoI])
apply (simp (no_asm_simp))
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])
done
(*Here we build a complicated function term, then simplify it using
case_cong, id_conv, comp_lam, case_case.*)
lemma prod_sum_singleton_bij:
"a~:C ==>
(lam x:C*B + D. case(%x. x, %y.<a,y>, x))
: bij(C*B + D, C*B Un {a}*D)"
apply (rule subst_elem)
apply (rule id_bij [THEN sum_bij, THEN comp_bij])
apply (rule singleton_prod_bij)
apply (rule sum_disjoint_bij)
apply blast
apply (simp (no_asm_simp) cong add: case_cong)
apply (rule comp_lam [THEN trans, symmetric])
apply (fast elim!: case_type)
apply (simp (no_asm_simp) add: case_case)
done
lemma prod_sum_singleton_ord_iso:
"[| a:A; well_ord(A,r) |] ==>
(lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))
: ord_iso(pred(A,a,r)*B + pred(B,b,s),
radd(A*B, rmult(A,r,B,s), B, s),
pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))"
apply (rule prod_sum_singleton_bij [THEN ord_isoI])
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)
done
(** Distributive law **)
lemma sum_prod_distrib_bij:
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
: bij((A+B)*C, (A*C)+(B*C))"
apply (rule_tac d = "case (%<x,y>.<Inl (x) ,y>, %<x,y>.<Inr (x) ,y>) "
in lam_bijective)
apply auto
done
lemma sum_prod_distrib_ord_iso:
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
: ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),
(A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
apply (rule sum_prod_distrib_bij [THEN ord_isoI])
apply auto
done
(** Associativity **)
lemma prod_assoc_bij:
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
apply (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective)
apply auto
done
lemma prod_assoc_ord_iso:
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)
: ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),
A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
apply (rule prod_assoc_bij [THEN ord_isoI])
apply auto
done
(**** Inverse image of a relation ****)
(** Rewrite rule **)
lemma rvimage_iff: "<a,b> : rvimage(A,f,r) <-> <f`a,f`b>: r & a:A & b:A"
apply (unfold rvimage_def)
apply blast
done
(** Type checking **)
lemma rvimage_type: "rvimage(A,f,r) <= A*A"
apply (unfold rvimage_def)
apply (rule Collect_subset)
done
lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
apply (unfold rvimage_def)
apply blast
done
(** Partial Ordering Properties **)
lemma irrefl_rvimage:
"[| f: inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"
apply (unfold irrefl_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done
lemma trans_on_rvimage:
"[| f: inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))"
apply (unfold trans_on_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done
lemma part_ord_rvimage:
"[| f: inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"
apply (unfold part_ord_def)
apply (blast intro!: irrefl_rvimage trans_on_rvimage)
done
(** Linearity **)
lemma linear_rvimage:
"[| f: inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
apply (simp add: inj_def linear_def rvimage_iff)
apply (blast intro: apply_funtype);
done
lemma tot_ord_rvimage:
"[| f: inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
apply (unfold tot_ord_def)
apply (blast intro!: part_ord_rvimage linear_rvimage)
done
(** Well-foundedness **)
(*Not sure if wf_on_rvimage could be proved from this!*)
lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
apply clarify
apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
apply (erule allE)
apply (erule impE)
apply assumption;
apply blast
apply (blast intro: elim:);
done
lemma wf_on_rvimage: "[| f: A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
apply (rule wf_onI2)
apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
apply blast
apply (erule_tac a = "f`y" in wf_on_induct)
apply (blast intro!: apply_funtype)
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1])
done
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
lemma well_ord_rvimage:
"[| f: inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"
apply (rule well_ordI)
apply (unfold well_ord_def tot_ord_def)
apply (blast intro!: wf_on_rvimage inj_is_fun)
apply (blast intro!: linear_rvimage)
done
lemma ord_iso_rvimage:
"f: bij(A,B) ==> f: ord_iso(A, rvimage(A,f,s), B, s)"
apply (unfold ord_iso_def)
apply (simp add: rvimage_iff)
done
lemma ord_iso_rvimage_eq:
"f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
apply (unfold ord_iso_def rvimage_def)
apply blast
done
(** The "measure" relation is useful with wfrec **)
lemma measure_eq_rvimage_Memrel:
"measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
apply (rule equalityI)
apply auto
apply (auto intro: Ord_in_Ord simp add: lt_def)
done
lemma wf_measure [iff]: "wf(measure(A,f))"
apply (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
done
lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
apply (simp (no_asm) add: measure_def)
done
ML {*
val measure_def = thm "measure_def";
val radd_Inl_Inr_iff = thm "radd_Inl_Inr_iff";
val radd_Inl_iff = thm "radd_Inl_iff";
val radd_Inr_iff = thm "radd_Inr_iff";
val radd_Inr_Inl_iff = thm "radd_Inr_Inl_iff";
val raddE = thm "raddE";
val radd_type = thm "radd_type";
val field_radd = thm "field_radd";
val linear_radd = thm "linear_radd";
val wf_on_radd = thm "wf_on_radd";
val wf_radd = thm "wf_radd";
val well_ord_radd = thm "well_ord_radd";
val sum_bij = thm "sum_bij";
val sum_ord_iso_cong = thm "sum_ord_iso_cong";
val sum_disjoint_bij = thm "sum_disjoint_bij";
val sum_assoc_bij = thm "sum_assoc_bij";
val sum_assoc_ord_iso = thm "sum_assoc_ord_iso";
val rmult_iff = thm "rmult_iff";
val rmultE = thm "rmultE";
val rmult_type = thm "rmult_type";
val field_rmult = thm "field_rmult";
val linear_rmult = thm "linear_rmult";
val wf_on_rmult = thm "wf_on_rmult";
val wf_rmult = thm "wf_rmult";
val well_ord_rmult = thm "well_ord_rmult";
val prod_bij = thm "prod_bij";
val prod_ord_iso_cong = thm "prod_ord_iso_cong";
val singleton_prod_bij = thm "singleton_prod_bij";
val singleton_prod_ord_iso = thm "singleton_prod_ord_iso";
val prod_sum_singleton_bij = thm "prod_sum_singleton_bij";
val prod_sum_singleton_ord_iso = thm "prod_sum_singleton_ord_iso";
val sum_prod_distrib_bij = thm "sum_prod_distrib_bij";
val sum_prod_distrib_ord_iso = thm "sum_prod_distrib_ord_iso";
val prod_assoc_bij = thm "prod_assoc_bij";
val prod_assoc_ord_iso = thm "prod_assoc_ord_iso";
val rvimage_iff = thm "rvimage_iff";
val rvimage_type = thm "rvimage_type";
val field_rvimage = thm "field_rvimage";
val rvimage_converse = thm "rvimage_converse";
val irrefl_rvimage = thm "irrefl_rvimage";
val trans_on_rvimage = thm "trans_on_rvimage";
val part_ord_rvimage = thm "part_ord_rvimage";
val linear_rvimage = thm "linear_rvimage";
val tot_ord_rvimage = thm "tot_ord_rvimage";
val wf_rvimage = thm "wf_rvimage";
val wf_on_rvimage = thm "wf_on_rvimage";
val well_ord_rvimage = thm "well_ord_rvimage";
val ord_iso_rvimage = thm "ord_iso_rvimage";
val ord_iso_rvimage_eq = thm "ord_iso_rvimage_eq";
val measure_eq_rvimage_Memrel = thm "measure_eq_rvimage_Memrel";
val wf_measure = thm "wf_measure";
val measure_iff = thm "measure_iff";
*}
end