(* Title: HOL/Relation.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory; Stefan Berghofer, TU Muenchen
*)
header {* Relations – as sets of pairs, and binary predicates *}
theory Relation
imports Datatype Finite_Set
begin
notation
bot ("\<bottom>") and
top ("\<top>") and
inf (infixl "\<sqinter>" 70) and
sup (infixl "\<squnion>" 65) and
Inf ("\<Sqinter>_" [900] 900) and
Sup ("\<Squnion>_" [900] 900)
syntax (xsymbols)
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
subsection {* Classical rules for reasoning on predicates *}
(* CANDIDATE declare predicate1I [Pure.intro!, intro!] *)
declare predicate1D [Pure.dest?, dest?]
(* CANDIDATE declare predicate1D [Pure.dest, dest] *)
declare predicate2I [Pure.intro!, intro!]
declare predicate2D [Pure.dest, dest]
declare bot1E [elim!]
declare bot2E [elim!]
declare top1I [intro!]
declare top2I [intro!]
declare inf1I [intro!]
declare inf2I [intro!]
declare inf1E [elim!]
declare inf2E [elim!]
declare sup1I1 [intro?]
declare sup2I1 [intro?]
declare sup1I2 [intro?]
declare sup2I2 [intro?]
declare sup1E [elim!]
declare sup2E [elim!]
declare sup1CI [intro!]
declare sup2CI [intro!]
declare INF1_I [intro!]
declare INF2_I [intro!]
declare INF1_D [elim]
declare INF2_D [elim]
declare INF1_E [elim]
declare INF2_E [elim]
declare SUP1_I [intro]
declare SUP2_I [intro]
declare SUP1_E [elim!]
declare SUP2_E [elim!]
subsection {* Conversions between set and predicate relations *}
lemma pred_equals_eq [pred_set_conv]: "((\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R = S)"
by (simp add: set_eq_iff fun_eq_iff)
lemma pred_equals_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R = S)"
by (simp add: set_eq_iff fun_eq_iff)
lemma pred_subset_eq [pred_set_conv]: "((\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S)) \<longleftrightarrow> (R \<subseteq> S)"
by (simp add: subset_iff le_fun_def)
lemma pred_subset_eq2 [pred_set_conv]: "((\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S)) \<longleftrightarrow> (R \<subseteq> S)"
by (simp add: subset_iff le_fun_def)
lemma bot_empty_eq (* CANDIDATE [pred_set_conv] *): "\<bottom> = (\<lambda>x. x \<in> {})"
by (auto simp add: fun_eq_iff)
lemma bot_empty_eq2 (* CANDIDATE [pred_set_conv] *): "\<bottom> = (\<lambda>x y. (x, y) \<in> {})"
by (auto simp add: fun_eq_iff)
(* CANDIDATE lemma top_empty_eq [pred_set_conv]: "\<top> = (\<lambda>x. x \<in> UNIV)"
by (auto simp add: fun_eq_iff) *)
(* CANDIDATE lemma top_empty_eq2 [pred_set_conv]: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)"
by (auto simp add: fun_eq_iff) *)
lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)"
by (simp add: inf_fun_def)
lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)"
by (simp add: inf_fun_def)
lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)"
by (simp add: sup_fun_def)
lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)"
by (simp add: sup_fun_def)
lemma INF_INT_eq (* CANDIDATE [pred_set_conv] *): "(\<Sqinter>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i. r i))"
by (simp add: INF_apply fun_eq_iff)
lemma INF_INT_eq2 (* CANDIDATE [pred_set_conv] *): "(\<Sqinter>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i. r i))"
by (simp add: INF_apply fun_eq_iff)
lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i. r i))"
by (simp add: SUP_apply fun_eq_iff)
lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i. r i))"
by (simp add: SUP_apply fun_eq_iff)
subsection {* Relations as sets of pairs *}
type_synonym 'a rel = "('a * 'a) set"
definition
converse :: "('a * 'b) set => ('b * 'a) set"
("(_^-1)" [1000] 999) where
"r^-1 = {(y, x). (x, y) : r}"
notation (xsymbols)
converse ("(_\<inverse>)" [1000] 999)
definition
rel_comp :: "[('a * 'b) set, ('b * 'c) set] => ('a * 'c) set"
(infixr "O" 75) where
"r O s = {(x,z). EX y. (x, y) : r & (y, z) : s}"
definition
Image :: "[('a * 'b) set, 'a set] => 'b set"
(infixl "``" 90) where
"r `` s = {y. EX x:s. (x,y):r}"
definition
Id :: "('a * 'a) set" where -- {* the identity relation *}
"Id = {p. EX x. p = (x,x)}"
definition
Id_on :: "'a set => ('a * 'a) set" where -- {* diagonal: identity over a set *}
"Id_on A = (\<Union>x\<in>A. {(x,x)})"
definition
Domain :: "('a * 'b) set => 'a set" where
"Domain r = {x. EX y. (x,y):r}"
definition
Range :: "('a * 'b) set => 'b set" where
"Range r = Domain(r^-1)"
definition
Field :: "('a * 'a) set => 'a set" where
"Field r = Domain r \<union> Range r"
definition
refl_on :: "['a set, ('a * 'a) set] => bool" where -- {* reflexivity over a set *}
"refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
abbreviation
refl :: "('a * 'a) set => bool" where -- {* reflexivity over a type *}
"refl \<equiv> refl_on UNIV"
definition
sym :: "('a * 'a) set => bool" where -- {* symmetry predicate *}
"sym r \<longleftrightarrow> (ALL x y. (x,y): r --> (y,x): r)"
definition
antisym :: "('a * 'a) set => bool" where -- {* antisymmetry predicate *}
"antisym r \<longleftrightarrow> (ALL x y. (x,y):r --> (y,x):r --> x=y)"
definition
trans :: "('a * 'a) set => bool" where -- {* transitivity predicate *}
"trans r \<longleftrightarrow> (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
definition
irrefl :: "('a * 'a) set => bool" where
"irrefl r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r)"
definition
total_on :: "'a set => ('a * 'a) set => bool" where
"total_on A r \<longleftrightarrow> (\<forall>x\<in>A.\<forall>y\<in>A. x\<noteq>y \<longrightarrow> (x,y)\<in>r \<or> (y,x)\<in>r)"
abbreviation "total \<equiv> total_on UNIV"
definition
single_valued :: "('a * 'b) set => bool" where
"single_valued r \<longleftrightarrow> (ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z))"
definition
inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set" where
"inv_image r f = {(x, y). (f x, f y) : r}"
subsubsection {* The identity relation *}
lemma IdI [intro]: "(a, a) : Id"
by (simp add: Id_def)
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
by (unfold Id_def) (iprover elim: CollectE)
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
by (unfold Id_def) blast
lemma refl_Id: "refl Id"
by (simp add: refl_on_def)
lemma antisym_Id: "antisym Id"
-- {* A strange result, since @{text Id} is also symmetric. *}
by (simp add: antisym_def)
lemma sym_Id: "sym Id"
by (simp add: sym_def)
lemma trans_Id: "trans Id"
by (simp add: trans_def)
subsubsection {* Diagonal: identity over a set *}
lemma Id_on_empty [simp]: "Id_on {} = {}"
by (simp add: Id_on_def)
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A"
by (simp add: Id_on_def)
lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A"
by (rule Id_on_eqI) (rule refl)
lemma Id_onE [elim!]:
"c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
-- {* The general elimination rule. *}
by (unfold Id_on_def) (iprover elim!: UN_E singletonE)
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)"
by blast
lemma Id_on_def' [nitpick_unfold]:
"Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)"
by auto
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A"
by blast
subsubsection {* Composition of two relations *}
lemma rel_compI [intro]:
"(a, b) : r ==> (b, c) : s ==> (a, c) : r O s"
by (unfold rel_comp_def) blast
lemma rel_compE [elim!]: "xz : r O s ==>
(!!x y z. xz = (x, z) ==> (x, y) : r ==> (y, z) : s ==> P) ==> P"
by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
lemma rel_compEpair:
"(a, c) : r O s ==> (!!y. (a, y) : r ==> (y, c) : s ==> P) ==> P"
by (iprover elim: rel_compE Pair_inject ssubst)
lemma R_O_Id [simp]: "R O Id = R"
by fast
lemma Id_O_R [simp]: "Id O R = R"
by fast
lemma rel_comp_empty1[simp]: "{} O R = {}"
by blast
lemma rel_comp_empty2[simp]: "R O {} = {}"
by blast
lemma O_assoc: "(R O S) O T = R O (S O T)"
by blast
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
by (unfold trans_def) blast
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
by blast
lemma rel_comp_subset_Sigma:
"r \<subseteq> A \<times> B ==> s \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
by blast
lemma rel_comp_distrib[simp]: "R O (S \<union> T) = (R O S) \<union> (R O T)"
by auto
lemma rel_comp_distrib2[simp]: "(S \<union> T) O R = (S O R) \<union> (T O R)"
by auto
lemma rel_comp_UNION_distrib: "s O UNION I r = UNION I (%i. s O r i)"
by auto
lemma rel_comp_UNION_distrib2: "UNION I r O s = UNION I (%i. r i O s)"
by auto
subsubsection {* Reflexivity *}
lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r"
by (unfold refl_on_def) (iprover intro!: ballI)
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r"
by (unfold refl_on_def) blast
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A"
by (unfold refl_on_def) blast
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A"
by (unfold refl_on_def) blast
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)"
by (unfold refl_on_def) blast
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)"
by (unfold refl_on_def) blast
lemma refl_on_INTER:
"ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)"
by (unfold refl_on_def) fast
lemma refl_on_UNION:
"ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)"
by (unfold refl_on_def) blast
lemma refl_on_empty[simp]: "refl_on {} {}"
by(simp add:refl_on_def)
lemma refl_on_Id_on: "refl_on A (Id_on A)"
by (rule refl_onI [OF Id_on_subset_Times Id_onI])
lemma refl_on_def' [nitpick_unfold, code]:
"refl_on A r = ((\<forall>(x, y) \<in> r. x : A \<and> y : A) \<and> (\<forall>x \<in> A. (x, x) : r))"
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2)
subsubsection {* Antisymmetry *}
lemma antisymI:
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
by (unfold antisym_def) iprover
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
by (unfold antisym_def) iprover
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
by (unfold antisym_def) blast
lemma antisym_empty [simp]: "antisym {}"
by (unfold antisym_def) blast
lemma antisym_Id_on [simp]: "antisym (Id_on A)"
by (unfold antisym_def) blast
subsubsection {* Symmetry *}
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
by (unfold sym_def) iprover
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
by (unfold sym_def, blast)
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
by (fast intro: symI dest: symD)
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
by (fast intro: symI dest: symD)
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
by (fast intro: symI dest: symD)
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
by (fast intro: symI dest: symD)
lemma sym_Id_on [simp]: "sym (Id_on A)"
by (rule symI) clarify
subsubsection {* Transitivity *}
lemma trans_join [code]:
"trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)"
by (auto simp add: trans_def)
lemma transI:
"(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
by (unfold trans_def) iprover
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
by (unfold trans_def) iprover
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
by (fast intro: transI elim: transD)
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
by (fast intro: transI elim: transD)
lemma trans_Id_on [simp]: "trans (Id_on A)"
by (fast intro: transI elim: transD)
lemma trans_diff_Id: " trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r-Id)"
unfolding antisym_def trans_def by blast
subsubsection {* Irreflexivity *}
lemma irrefl_distinct [code]:
"irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)"
by (auto simp add: irrefl_def)
lemma irrefl_diff_Id[simp]: "irrefl(r-Id)"
by(simp add:irrefl_def)
subsubsection {* Totality *}
lemma total_on_empty[simp]: "total_on {} r"
by(simp add:total_on_def)
lemma total_on_diff_Id[simp]: "total_on A (r-Id) = total_on A r"
by(simp add: total_on_def)
subsubsection {* Converse *}
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
by (simp add: converse_def)
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
by (simp add: converse_def)
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
by (simp add: converse_def)
lemma converseE [elim!]:
"yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
lemma converse_converse [simp]: "(r^-1)^-1 = r"
by (unfold converse_def) blast
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
by blast
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
by blast
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
by blast
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
by fast
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
by blast
lemma converse_Id [simp]: "Id^-1 = Id"
by blast
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A"
by blast
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r"
by (unfold refl_on_def) auto
lemma sym_converse [simp]: "sym (converse r) = sym r"
by (unfold sym_def) blast
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
by (unfold antisym_def) blast
lemma trans_converse [simp]: "trans (converse r) = trans r"
by (unfold trans_def) blast
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
by (unfold sym_def) fast
lemma sym_Un_converse: "sym (r \<union> r^-1)"
by (unfold sym_def) blast
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
by (unfold sym_def) blast
lemma total_on_converse[simp]: "total_on A (r^-1) = total_on A r"
by (auto simp: total_on_def)
subsubsection {* Domain *}
declare Domain_def [no_atp]
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
by (unfold Domain_def) blast
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
by (iprover intro!: iffD2 [OF Domain_iff])
lemma DomainE [elim!]:
"a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
by (iprover dest!: iffD1 [OF Domain_iff])
lemma Domain_fst [code]:
"Domain r = fst ` r"
by (auto simp add: image_def Bex_def)
lemma Domain_empty [simp]: "Domain {} = {}"
by blast
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}"
by auto
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
by blast
lemma Domain_Id [simp]: "Domain Id = UNIV"
by blast
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A"
by blast
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
by blast
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
by blast
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
by blast
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
by blast
lemma Domain_converse[simp]: "Domain(r^-1) = Range r"
by(auto simp:Range_def)
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
by blast
lemma fst_eq_Domain: "fst ` R = Domain R"
by force
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
by auto
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
by auto
subsubsection {* Range *}
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
by (simp add: Domain_def Range_def)
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
by (unfold Range_def) (iprover intro!: converseI DomainI)
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
lemma Range_snd [code]:
"Range r = snd ` r"
by (auto simp add: image_def Bex_def)
lemma Range_empty [simp]: "Range {} = {}"
by blast
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}"
by auto
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
by blast
lemma Range_Id [simp]: "Range Id = UNIV"
by blast
lemma Range_Id_on [simp]: "Range (Id_on A) = A"
by auto
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
by blast
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
by blast
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
by blast
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
by blast
lemma Range_converse[simp]: "Range(r^-1) = Domain r"
by blast
lemma snd_eq_Range: "snd ` R = Range R"
by force
subsubsection {* Field *}
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s"
by(auto simp:Field_def Domain_def Range_def)
lemma Field_empty[simp]: "Field {} = {}"
by(auto simp:Field_def)
lemma Field_insert[simp]: "Field (insert (a,b) r) = {a,b} \<union> Field r"
by(auto simp:Field_def)
lemma Field_Un[simp]: "Field (r \<union> s) = Field r \<union> Field s"
by(auto simp:Field_def)
lemma Field_Union[simp]: "Field (\<Union>R) = \<Union>(Field ` R)"
by(auto simp:Field_def)
lemma Field_converse[simp]: "Field(r^-1) = Field r"
by(auto simp:Field_def)
subsubsection {* Image of a set under a relation *}
declare Image_def [no_atp]
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
by (simp add: Image_def)
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
by (simp add: Image_def)
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
by (rule Image_iff [THEN trans]) simp
lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A"
by (unfold Image_def) blast
lemma ImageE [elim!]:
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
by (unfold Image_def) (iprover elim!: CollectE bexE)
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
-- {* This version's more effective when we already have the required @{text a} *}
by blast
lemma Image_empty [simp]: "R``{} = {}"
by blast
lemma Image_Id [simp]: "Id `` A = A"
by blast
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B"
by blast
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
by blast
lemma Image_Int_eq:
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
by (simp add: single_valued_def, blast)
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
by blast
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
by blast
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
-- {* NOT suitable for rewriting *}
by blast
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
by blast
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
by blast
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
by blast
text{*Converse inclusion requires some assumptions*}
lemma Image_INT_eq:
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
apply (rule equalityI)
apply (rule Image_INT_subset)
apply (simp add: single_valued_def, blast)
done
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
by blast
subsubsection {* Single valued relations *}
lemma single_valuedI:
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
by (unfold single_valued_def)
lemma single_valuedD:
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
by (simp add: single_valued_def)
lemma single_valued_rel_comp:
"single_valued r ==> single_valued s ==> single_valued (r O s)"
by (unfold single_valued_def) blast
lemma single_valued_subset:
"r \<subseteq> s ==> single_valued s ==> single_valued r"
by (unfold single_valued_def) blast
lemma single_valued_Id [simp]: "single_valued Id"
by (unfold single_valued_def) blast
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)"
by (unfold single_valued_def) blast
subsubsection {* Graphs given by @{text Collect} *}
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
by auto
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
by auto
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
by auto
subsubsection {* Inverse image *}
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
by (unfold sym_def inv_image_def) blast
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
apply (unfold trans_def inv_image_def)
apply (simp (no_asm))
apply blast
done
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)"
by (auto simp:inv_image_def)
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f"
unfolding inv_image_def converse_def by auto
subsubsection {* Finiteness *}
lemma finite_converse [iff]: "finite (r^-1) = finite r"
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")
apply simp
apply (rule iffI)
apply (erule finite_imageD [unfolded inj_on_def])
apply (simp split add: split_split)
apply (erule finite_imageI)
apply (simp add: converse_def image_def, auto)
apply (rule bexI)
prefer 2 apply assumption
apply simp
done
lemma finite_Domain: "finite r ==> finite (Domain r)"
by (induct set: finite) (auto simp add: Domain_insert)
lemma finite_Range: "finite r ==> finite (Range r)"
by (induct set: finite) (auto simp add: Range_insert)
lemma finite_Field: "finite r ==> finite (Field r)"
-- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
apply (induct set: finite)
apply (auto simp add: Field_def Domain_insert Range_insert)
done
subsubsection {* Miscellaneous *}
text {* Version of @{thm[source] lfp_induct} for binary relations *}
lemmas lfp_induct2 =
lfp_induct_set [of "(a, b)", split_format (complete)]
text {* Version of @{thm[source] subsetI} for binary relations *}
lemma subrelI: "(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s"
by auto
subsection {* Relations as binary predicates *}
subsubsection {* Composition *}
inductive pred_comp :: "['a \<Rightarrow> 'b \<Rightarrow> bool, 'b \<Rightarrow> 'c \<Rightarrow> bool] \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> bool" (infixr "OO" 75)
for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and s :: "'b \<Rightarrow> 'c \<Rightarrow> bool" where
pred_compI [intro]: "r a b \<Longrightarrow> s b c \<Longrightarrow> (r OO s) a c"
inductive_cases pred_compE [elim!]: "(r OO s) a c"
lemma pred_comp_rel_comp_eq [pred_set_conv]:
"((\<lambda>x y. (x, y) \<in> r) OO (\<lambda>x y. (x, y) \<in> s)) = (\<lambda>x y. (x, y) \<in> r O s)"
by (auto simp add: fun_eq_iff)
subsubsection {* Converse *}
inductive conversep :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(_^--1)" [1000] 1000)
for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
conversepI: "r a b \<Longrightarrow> r^--1 b a"
notation (xsymbols)
conversep ("(_\<inverse>\<inverse>)" [1000] 1000)
lemma conversepD:
assumes ab: "r^--1 a b"
shows "r b a" using ab
by cases simp
lemma conversep_iff [iff]: "r^--1 a b = r b a"
by (iprover intro: conversepI dest: conversepD)
lemma conversep_converse_eq [pred_set_conv]:
"(\<lambda>x y. (x, y) \<in> r)^--1 = (\<lambda>x y. (x, y) \<in> r^-1)"
by (auto simp add: fun_eq_iff)
lemma conversep_conversep [simp]: "(r^--1)^--1 = r"
by (iprover intro: order_antisym conversepI dest: conversepD)
lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1"
by (iprover intro: order_antisym conversepI pred_compI
elim: pred_compE dest: conversepD)
lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1"
by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD)
lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1"
by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD)
lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>"
by (auto simp add: fun_eq_iff)
lemma conversep_eq [simp]: "(op =)^--1 = op ="
by (auto simp add: fun_eq_iff)
subsubsection {* Domain *}
inductive DomainP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
DomainPI [intro]: "r a b \<Longrightarrow> DomainP r a"
inductive_cases DomainPE [elim!]: "DomainP r a"
lemma DomainP_Domain_eq [pred_set_conv]: "DomainP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Domain r)"
by (blast intro!: Orderings.order_antisym predicate1I)
subsubsection {* Range *}
inductive RangeP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool"
for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where
RangePI [intro]: "r a b \<Longrightarrow> RangeP r b"
inductive_cases RangePE [elim!]: "RangeP r b"
lemma RangeP_Range_eq [pred_set_conv]: "RangeP (\<lambda>x y. (x, y) \<in> r) = (\<lambda>x. x \<in> Range r)"
by (blast intro!: Orderings.order_antisym predicate1I)
subsubsection {* Inverse image *}
definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where
"inv_imagep r f = (\<lambda>x y. r (f x) (f y))"
lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)"
by (simp add: inv_image_def inv_imagep_def)
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)"
by (simp add: inv_imagep_def)
subsubsection {* Powerset *}
definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" where
"Powp A = (\<lambda>B. \<forall>x \<in> B. A x)"
lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)"
by (auto simp add: Powp_def fun_eq_iff)
lemmas Powp_mono [mono] = Pow_mono [to_pred]
subsubsection {* Properties of predicate relations *}
abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"antisymP r \<equiv> antisym {(x, y). r x y}"
abbreviation transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"transP r \<equiv> trans {(x, y). r x y}"
abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where
"single_valuedP r \<equiv> single_valued {(x, y). r x y}"
(*FIXME inconsistencies: abbreviations vs. definitions, suffix `P` vs. suffix `p`*)
definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"reflp r \<longleftrightarrow> refl {(x, y). r x y}"
definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"symp r \<longleftrightarrow> sym {(x, y). r x y}"
definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"transp r \<longleftrightarrow> trans {(x, y). r x y}"
lemma reflpI:
"(\<And>x. r x x) \<Longrightarrow> reflp r"
by (auto intro: refl_onI simp add: reflp_def)
lemma reflpE:
assumes "reflp r"
obtains "r x x"
using assms by (auto dest: refl_onD simp add: reflp_def)
lemma sympI:
"(\<And>x y. r x y \<Longrightarrow> r y x) \<Longrightarrow> symp r"
by (auto intro: symI simp add: symp_def)
lemma sympE:
assumes "symp r" and "r x y"
obtains "r y x"
using assms by (auto dest: symD simp add: symp_def)
lemma transpI:
"(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r"
by (auto intro: transI simp add: transp_def)
lemma transpE:
assumes "transp r" and "r x y" and "r y z"
obtains "r x z"
using assms by (auto dest: transD simp add: transp_def)
no_notation
bot ("\<bottom>") and
top ("\<top>") and
inf (infixl "\<sqinter>" 70) and
sup (infixl "\<squnion>" 65) and
Inf ("\<Sqinter>_" [900] 900) and
Sup ("\<Squnion>_" [900] 900)
no_syntax (xsymbols)
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10)
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10)
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
end