renamed Simplifier.theory_context to Simplifier.global_context to emphasize that this is not the real thing;
(* Title: HOL/Tools/inductive_codegen.ML
Author: Stefan Berghofer, TU Muenchen
Code generator for inductive predicates.
*)
signature INDUCTIVE_CODEGEN =
sig
val add : string option -> int option -> attribute
val test_fn : (int * int * int -> term list option) Unsynchronized.ref
val test_term: Proof.context -> term -> int -> term list option
val setup : theory -> theory
val quickcheck_setup : theory -> theory
end;
structure InductiveCodegen : INDUCTIVE_CODEGEN =
struct
open Codegen;
(**** theory data ****)
fun merge_rules tabs =
Symtab.join (fn _ => AList.merge (Thm.eq_thm_prop) (K true)) tabs;
structure CodegenData = Theory_Data
(
type T =
{intros : (thm * (string * int)) list Symtab.table,
graph : unit Graph.T,
eqns : (thm * string) list Symtab.table};
val empty =
{intros = Symtab.empty, graph = Graph.empty, eqns = Symtab.empty};
val extend = I;
fun merge ({intros=intros1, graph=graph1, eqns=eqns1},
{intros=intros2, graph=graph2, eqns=eqns2}) : T =
{intros = merge_rules (intros1, intros2),
graph = Graph.merge (K true) (graph1, graph2),
eqns = merge_rules (eqns1, eqns2)};
);
fun warn thm = warning ("InductiveCodegen: Not a proper clause:\n" ^
Display.string_of_thm_without_context thm);
fun add_node x g = Graph.new_node (x, ()) g handle Graph.DUP _ => g;
fun add optmod optnparms = Thm.declaration_attribute (fn thm => Context.mapping (fn thy =>
let
val {intros, graph, eqns} = CodegenData.get thy;
fun thyname_of s = (case optmod of
NONE => Codegen.thyname_of_const thy s | SOME s => s);
in (case Option.map strip_comb (try HOLogic.dest_Trueprop (concl_of thm)) of
SOME (Const ("op =", _), [t, _]) => (case head_of t of
Const (s, _) =>
CodegenData.put {intros = intros, graph = graph,
eqns = eqns |> Symtab.map_default (s, [])
(AList.update Thm.eq_thm_prop (thm, thyname_of s))} thy
| _ => (warn thm; thy))
| SOME (Const (s, _), _) =>
let
val cs = fold Term.add_const_names (Thm.prems_of thm) [];
val rules = Symtab.lookup_list intros s;
val nparms = (case optnparms of
SOME k => k
| NONE => (case rules of
[] => (case try (Inductive.the_inductive (ProofContext.init thy)) s of
SOME (_, {raw_induct, ...}) =>
length (Inductive.params_of raw_induct)
| NONE => 0)
| xs => snd (snd (snd (split_last xs)))))
in CodegenData.put
{intros = intros |>
Symtab.update (s, (AList.update Thm.eq_thm_prop
(thm, (thyname_of s, nparms)) rules)),
graph = fold_rev (Graph.add_edge o pair s) cs (fold add_node (s :: cs) graph),
eqns = eqns} thy
end
| _ => (warn thm; thy))
end) I);
fun get_clauses thy s =
let val {intros, graph, ...} = CodegenData.get thy
in case Symtab.lookup intros s of
NONE => (case try (Inductive.the_inductive (ProofContext.init thy)) s of
NONE => NONE
| SOME ({names, ...}, {intrs, raw_induct, ...}) =>
SOME (names, Codegen.thyname_of_const thy s,
length (Inductive.params_of raw_induct),
preprocess thy intrs))
| SOME _ =>
let
val SOME names = find_first
(fn xs => member (op =) xs s) (Graph.strong_conn graph);
val intrs as (_, (thyname, nparms)) :: _ =
maps (the o Symtab.lookup intros) names;
in SOME (names, thyname, nparms, preprocess thy (map fst (rev intrs))) end
end;
(**** check if a term contains only constructor functions ****)
fun is_constrt thy =
let
val cnstrs = flat (maps
(map (fn (_, (_, _, cs)) => map (apsnd length) cs) o #descr o snd)
(Symtab.dest (Datatype_Data.get_all thy)));
fun check t = (case strip_comb t of
(Var _, []) => true
| (Const (s, _), ts) => (case AList.lookup (op =) cnstrs s of
NONE => false
| SOME i => length ts = i andalso forall check ts)
| _ => false)
in check end;
(**** check if a type is an equality type (i.e. doesn't contain fun) ****)
fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
| is_eqT _ = true;
(**** mode inference ****)
fun string_of_mode (iss, is) = space_implode " -> " (map
(fn NONE => "X"
| SOME js => enclose "[" "]" (commas (map string_of_int js)))
(iss @ [SOME is]));
fun print_modes modes = message ("Inferred modes:\n" ^
cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
(fn (m, rnd) => string_of_mode m ^
(if rnd then " (random)" else "")) ms)) modes));
val term_vs = map (fst o fst o dest_Var) o OldTerm.term_vars;
val terms_vs = distinct (op =) o maps term_vs;
(** collect all Vars in a term (with duplicates!) **)
fun term_vTs tm =
fold_aterms (fn Var ((x, _), T) => cons (x, T) | _ => I) tm [];
fun get_args _ _ [] = ([], [])
| get_args is i (x::xs) = (if i mem is then apfst else apsnd) (cons x)
(get_args is (i+1) xs);
fun merge xs [] = xs
| merge [] ys = ys
| merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
else y::merge (x::xs) ys;
fun subsets i j = if i <= j then
let val is = subsets (i+1) j
in merge (map (fn ks => i::ks) is) is end
else [[]];
fun cprod ([], ys) = []
| cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
fun cprods xss = List.foldr (map op :: o cprod) [[]] xss;
datatype mode = Mode of ((int list option list * int list) * bool) * int list * mode option list;
fun needs_random (Mode ((_, b), _, ms)) =
b orelse exists (fn NONE => false | SOME m => needs_random m) ms;
fun modes_of modes t =
let
val ks = 1 upto length (binder_types (fastype_of t));
val default = [Mode ((([], ks), false), ks, [])];
fun mk_modes name args = Option.map
(maps (fn (m as ((iss, is), _)) =>
let
val (args1, args2) =
if length args < length iss then
error ("Too few arguments for inductive predicate " ^ name)
else chop (length iss) args;
val k = length args2;
val prfx = 1 upto k
in
if not (is_prefix op = prfx is) then [] else
let val is' = map (fn i => i - k) (List.drop (is, k))
in map (fn x => Mode (m, is', x)) (cprods (map
(fn (NONE, _) => [NONE]
| (SOME js, arg) => map SOME (filter
(fn Mode (_, js', _) => js=js') (modes_of modes arg)))
(iss ~~ args1)))
end
end)) (AList.lookup op = modes name)
in (case strip_comb t of
(Const ("op =", Type (_, [T, _])), _) =>
[Mode ((([], [1]), false), [1], []), Mode ((([], [2]), false), [2], [])] @
(if is_eqT T then [Mode ((([], [1, 2]), false), [1, 2], [])] else [])
| (Const (name, _), args) => the_default default (mk_modes name args)
| (Var ((name, _), _), args) => the (mk_modes name args)
| (Free (name, _), args) => the (mk_modes name args)
| _ => default)
end;
datatype indprem = Prem of term list * term * bool | Sidecond of term;
fun missing_vars vs ts = subtract (fn (x, ((y, _), _)) => x = y) vs
(fold Term.add_vars ts []);
fun monomorphic_vars vs = null (fold (Term.add_tvarsT o snd) vs []);
fun mode_ord p = int_ord (pairself (fn (Mode ((_, rnd), _, _), vs) =>
length vs + (if null vs then 0 else 1) + (if rnd then 1 else 0)) p);
fun select_mode_prem thy modes vs ps =
sort (mode_ord o pairself (hd o snd))
(filter_out (null o snd) (ps ~~ map
(fn Prem (us, t, is_set) => sort mode_ord
(List.mapPartial (fn m as Mode (_, is, _) =>
let
val (in_ts, out_ts) = get_args is 1 us;
val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
val vTs = maps term_vTs out_ts';
val dupTs = map snd (duplicates (op =) vTs) @
map_filter (AList.lookup (op =) vTs) vs;
val missing_vs = missing_vars vs (t :: in_ts @ in_ts')
in
if forall (is_eqT o fastype_of) in_ts' andalso forall is_eqT dupTs
andalso monomorphic_vars missing_vs
then SOME (m, missing_vs)
else NONE
end)
(if is_set then [Mode ((([], []), false), [], [])]
else modes_of modes t handle Option =>
error ("Bad predicate: " ^ Syntax.string_of_term_global thy t)))
| Sidecond t =>
let val missing_vs = missing_vars vs [t]
in
if monomorphic_vars missing_vs
then [(Mode ((([], []), false), [], []), missing_vs)]
else []
end)
ps));
fun use_random () = "random_ind" mem !Codegen.mode;
fun check_mode_clause thy arg_vs modes ((iss, is), rnd) (ts, ps) =
let
val modes' = modes @ map_filter
(fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [(([], js), false)]))
(arg_vs ~~ iss);
fun check_mode_prems vs rnd [] = SOME (vs, rnd)
| check_mode_prems vs rnd ps = (case select_mode_prem thy modes' vs ps of
(x, (m, []) :: _) :: _ => check_mode_prems
(case x of Prem (us, _, _) => union (op =) vs (terms_vs us) | _ => vs)
(rnd orelse needs_random m)
(filter_out (equal x) ps)
| (_, (_, vs') :: _) :: _ =>
if use_random () then
check_mode_prems (union (op =) vs (map (fst o fst) vs')) true ps
else NONE
| _ => NONE);
val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (get_args is 1 ts));
val in_vs = terms_vs in_ts;
in
if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
forall (is_eqT o fastype_of) in_ts'
then (case check_mode_prems (union (op =) arg_vs in_vs) rnd ps of
NONE => NONE
| SOME (vs, rnd') =>
let val missing_vs = missing_vars vs ts
in
if null missing_vs orelse
use_random () andalso monomorphic_vars missing_vs
then SOME (rnd' orelse not (null missing_vs))
else NONE
end)
else NONE
end;
fun check_modes_pred thy arg_vs preds modes (p, ms) =
let val SOME rs = AList.lookup (op =) preds p
in (p, List.mapPartial (fn m as (m', _) =>
let val xs = map (check_mode_clause thy arg_vs modes m) rs
in case find_index is_none xs of
~1 => SOME (m', exists (fn SOME b => b) xs)
| i => (message ("Clause " ^ string_of_int (i+1) ^ " of " ^
p ^ " violates mode " ^ string_of_mode m'); NONE)
end) ms)
end;
fun fixp f (x : (string * ((int list option list * int list) * bool) list) list) =
let val y = f x
in if x = y then x else fixp f y end;
fun infer_modes thy extra_modes arities arg_vs preds = fixp (fn modes =>
map (check_modes_pred thy arg_vs preds (modes @ extra_modes)) modes)
(map (fn (s, (ks, k)) => (s, map (rpair false) (cprod (cprods (map
(fn NONE => [NONE]
| SOME k' => map SOME (subsets 1 k')) ks),
subsets 1 k)))) arities);
(**** code generation ****)
fun mk_eq (x::xs) =
let fun mk_eqs _ [] = []
| mk_eqs a (b::cs) = str (a ^ " = " ^ b) :: mk_eqs b cs
in mk_eqs x xs end;
fun mk_tuple xs = Pretty.block (str "(" ::
flat (separate [str ",", Pretty.brk 1] (map single xs)) @
[str ")"]);
fun mk_v s (names, vs) =
(case AList.lookup (op =) vs s of
NONE => (s, (names, (s, [s])::vs))
| SOME xs =>
let val s' = Name.variant names s
in (s', (s'::names, AList.update (op =) (s, s'::xs) vs)) end);
fun distinct_v (Var ((s, 0), T)) nvs =
let val (s', nvs') = mk_v s nvs
in (Var ((s', 0), T), nvs') end
| distinct_v (t $ u) nvs =
let
val (t', nvs') = distinct_v t nvs;
val (u', nvs'') = distinct_v u nvs';
in (t' $ u', nvs'') end
| distinct_v t nvs = (t, nvs);
fun is_exhaustive (Var _) = true
| is_exhaustive (Const ("Pair", _) $ t $ u) =
is_exhaustive t andalso is_exhaustive u
| is_exhaustive _ = false;
fun compile_match nvs eq_ps out_ps success_p can_fail =
let val eqs = flat (separate [str " andalso", Pretty.brk 1]
(map single (maps (mk_eq o snd) nvs @ eq_ps)));
in
Pretty.block
([str "(fn ", mk_tuple out_ps, str " =>", Pretty.brk 1] @
(Pretty.block ((if eqs=[] then [] else str "if " ::
[Pretty.block eqs, Pretty.brk 1, str "then "]) @
(success_p ::
(if eqs=[] then [] else [Pretty.brk 1, str "else DSeq.empty"]))) ::
(if can_fail then
[Pretty.brk 1, str "| _ => DSeq.empty)"]
else [str ")"])))
end;
fun modename module s (iss, is) gr =
let val (id, gr') = if s = @{const_name "op ="} then (("", "equal"), gr)
else mk_const_id module s gr
in (space_implode "__"
(mk_qual_id module id ::
map (space_implode "_" o map string_of_int) (map_filter I iss @ [is])), gr')
end;
fun mk_funcomp brack s k p = (if brack then parens else I)
(Pretty.block [Pretty.block ((if k = 0 then [] else [str "("]) @
separate (Pretty.brk 1) (str s :: replicate k (str "|> ???")) @
(if k = 0 then [] else [str ")"])), Pretty.brk 1, p]);
fun compile_expr thy defs dep module brack modes (NONE, t) gr =
apfst single (invoke_codegen thy defs dep module brack t gr)
| compile_expr _ _ _ _ _ _ (SOME _, Var ((name, _), _)) gr =
([str name], gr)
| compile_expr thy defs dep module brack modes (SOME (Mode ((mode, _), _, ms)), t) gr =
(case strip_comb t of
(Const (name, _), args) =>
if name = @{const_name "op ="} orelse AList.defined op = modes name then
let
val (args1, args2) = chop (length ms) args;
val ((ps, mode_id), gr') = gr |> fold_map
(compile_expr thy defs dep module true modes) (ms ~~ args1)
||>> modename module name mode;
val (ps', gr'') = (case mode of
([], []) => ([str "()"], gr')
| _ => fold_map
(invoke_codegen thy defs dep module true) args2 gr')
in ((if brack andalso not (null ps andalso null ps') then
single o parens o Pretty.block else I)
(flat (separate [Pretty.brk 1]
([str mode_id] :: ps @ map single ps'))), gr')
end
else apfst (single o mk_funcomp brack "??" (length (binder_types (fastype_of t))))
(invoke_codegen thy defs dep module true t gr)
| _ => apfst (single o mk_funcomp brack "??" (length (binder_types (fastype_of t))))
(invoke_codegen thy defs dep module true t gr));
fun compile_clause thy defs dep module all_vs arg_vs modes (iss, is) (ts, ps) inp gr =
let
val modes' = modes @ map_filter
(fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [(([], js), false)]))
(arg_vs ~~ iss);
fun check_constrt t (names, eqs) =
if is_constrt thy t then (t, (names, eqs))
else
let val s = Name.variant names "x";
in (Var ((s, 0), fastype_of t), (s::names, (s, t)::eqs)) end;
fun compile_eq (s, t) gr =
apfst (Pretty.block o cons (str (s ^ " = ")) o single)
(invoke_codegen thy defs dep module false t gr);
val (in_ts, out_ts) = get_args is 1 ts;
val (in_ts', (all_vs', eqs)) = fold_map check_constrt in_ts (all_vs, []);
fun compile_prems out_ts' vs names [] gr =
let
val (out_ps, gr2) =
fold_map (invoke_codegen thy defs dep module false) out_ts gr;
val (eq_ps, gr3) = fold_map compile_eq eqs gr2;
val (out_ts'', (names', eqs')) = fold_map check_constrt out_ts' (names, []);
val (out_ts''', nvs) =
fold_map distinct_v out_ts'' (names', map (fn x => (x, [x])) vs);
val (out_ps', gr4) =
fold_map (invoke_codegen thy defs dep module false) out_ts''' gr3;
val (eq_ps', gr5) = fold_map compile_eq eqs' gr4;
val vs' = distinct (op =) (flat (vs :: map term_vs out_ts'));
val missing_vs = missing_vars vs' out_ts;
val final_p = Pretty.block
[str "DSeq.single", Pretty.brk 1, mk_tuple out_ps]
in
if null missing_vs then
(compile_match (snd nvs) (eq_ps @ eq_ps') out_ps'
final_p (exists (not o is_exhaustive) out_ts'''), gr5)
else
let
val (pat_p, gr6) = invoke_codegen thy defs dep module true
(HOLogic.mk_tuple (map Var missing_vs)) gr5;
val gen_p = mk_gen gr6 module true [] ""
(HOLogic.mk_tupleT (map snd missing_vs))
in
(compile_match (snd nvs) eq_ps' out_ps'
(Pretty.block [str "DSeq.generator ", gen_p,
str " :->", Pretty.brk 1,
compile_match [] eq_ps [pat_p] final_p false])
(exists (not o is_exhaustive) out_ts'''),
gr6)
end
end
| compile_prems out_ts vs names ps gr =
let
val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
val (out_ts', (names', eqs)) = fold_map check_constrt out_ts (names, []);
val (out_ts'', nvs) = fold_map distinct_v out_ts' (names', map (fn x => (x, [x])) vs);
val (out_ps, gr0) = fold_map (invoke_codegen thy defs dep module false) out_ts'' gr;
val (eq_ps, gr1) = fold_map compile_eq eqs gr0;
in
(case hd (select_mode_prem thy modes' vs' ps) of
(p as Prem (us, t, is_set), (mode as Mode (_, js, _), []) :: _) =>
let
val ps' = filter_out (equal p) ps;
val (in_ts, out_ts''') = get_args js 1 us;
val (in_ps, gr2) = fold_map
(invoke_codegen thy defs dep module true) in_ts gr1;
val (ps, gr3) =
if not is_set then
apfst (fn ps => ps @
(if null in_ps then [] else [Pretty.brk 1]) @
separate (Pretty.brk 1) in_ps)
(compile_expr thy defs dep module false modes
(SOME mode, t) gr2)
else
apfst (fn p => Pretty.breaks [str "DSeq.of_list", str "(case", p,
str "of", str "Set", str "xs", str "=>", str "xs)"])
(*this is a very strong assumption about the generated code!*)
(invoke_codegen thy defs dep module true t gr2);
val (rest, gr4) = compile_prems out_ts''' vs' (fst nvs) ps' gr3;
in
(compile_match (snd nvs) eq_ps out_ps
(Pretty.block (ps @
[str " :->", Pretty.brk 1, rest]))
(exists (not o is_exhaustive) out_ts''), gr4)
end
| (p as Sidecond t, [(_, [])]) =>
let
val ps' = filter_out (equal p) ps;
val (side_p, gr2) = invoke_codegen thy defs dep module true t gr1;
val (rest, gr3) = compile_prems [] vs' (fst nvs) ps' gr2;
in
(compile_match (snd nvs) eq_ps out_ps
(Pretty.block [str "?? ", side_p,
str " :->", Pretty.brk 1, rest])
(exists (not o is_exhaustive) out_ts''), gr3)
end
| (_, (_, missing_vs) :: _) =>
let
val T = HOLogic.mk_tupleT (map snd missing_vs);
val (_, gr2) = invoke_tycodegen thy defs dep module false T gr1;
val gen_p = mk_gen gr2 module true [] "" T;
val (rest, gr3) = compile_prems
[HOLogic.mk_tuple (map Var missing_vs)] vs' (fst nvs) ps gr2
in
(compile_match (snd nvs) eq_ps out_ps
(Pretty.block [str "DSeq.generator", Pretty.brk 1,
gen_p, str " :->", Pretty.brk 1, rest])
(exists (not o is_exhaustive) out_ts''), gr3)
end)
end;
val (prem_p, gr') = compile_prems in_ts' arg_vs all_vs' ps gr ;
in
(Pretty.block [str "DSeq.single", Pretty.brk 1, inp,
str " :->", Pretty.brk 1, prem_p], gr')
end;
fun compile_pred thy defs dep module prfx all_vs arg_vs modes s cls mode gr =
let
val xs = map str (Name.variant_list arg_vs
(map (fn i => "x" ^ string_of_int i) (snd mode)));
val ((cl_ps, mode_id), gr') = gr |>
fold_map (fn cl => compile_clause thy defs
dep module all_vs arg_vs modes mode cl (mk_tuple xs)) cls ||>>
modename module s mode
in
(Pretty.block
([Pretty.block (separate (Pretty.brk 1)
(str (prfx ^ mode_id) ::
map str arg_vs @
(case mode of ([], []) => [str "()"] | _ => xs)) @
[str " ="]),
Pretty.brk 1] @
flat (separate [str " ++", Pretty.brk 1] (map single cl_ps))), (gr', "and "))
end;
fun compile_preds thy defs dep module all_vs arg_vs modes preds gr =
let val (prs, (gr', _)) = fold_map (fn (s, cls) =>
fold_map (fn (mode, _) => fn (gr', prfx') => compile_pred thy defs
dep module prfx' all_vs arg_vs modes s cls mode gr')
(((the o AList.lookup (op =) modes) s))) preds (gr, "fun ")
in
(space_implode "\n\n" (map string_of (flat prs)) ^ ";\n\n", gr')
end;
(**** processing of introduction rules ****)
exception Modes of
(string * ((int list option list * int list) * bool) list) list *
(string * (int option list * int)) list;
fun lookup_modes gr dep = apfst flat (apsnd flat (ListPair.unzip
(map ((fn (SOME (Modes x), _, _) => x | _ => ([], [])) o get_node gr)
(Graph.all_preds (fst gr) [dep]))));
fun print_arities arities = message ("Arities:\n" ^
cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
space_implode " -> " (map
(fn NONE => "X" | SOME k' => string_of_int k')
(ks @ [SOME k]))) arities));
fun prep_intrs intrs = map (rename_term o #prop o rep_thm o Drule.export_without_context) intrs;
fun constrain cs [] = []
| constrain cs ((s, xs) :: ys) =
(s,
case AList.lookup (op =) cs (s : string) of
NONE => xs
| SOME xs' => inter (op = o apfst fst) xs' xs) :: constrain cs ys;
fun mk_extra_defs thy defs gr dep names module ts =
fold (fn name => fn gr =>
if name mem names then gr
else
(case get_clauses thy name of
NONE => gr
| SOME (names, thyname, nparms, intrs) =>
mk_ind_def thy defs gr dep names (if_library thyname module)
[] (prep_intrs intrs) nparms))
(fold Term.add_const_names ts []) gr
and mk_ind_def thy defs gr dep names module modecs intrs nparms =
add_edge_acyclic (hd names, dep) gr handle
Graph.CYCLES (xs :: _) =>
error ("InductiveCodegen: illegal cyclic dependencies:\n" ^ commas xs)
| Graph.UNDEF _ =>
let
val _ $ u = Logic.strip_imp_concl (hd intrs);
val args = List.take (snd (strip_comb u), nparms);
val arg_vs = maps term_vs args;
fun get_nparms s = if s mem names then SOME nparms else
Option.map #3 (get_clauses thy s);
fun dest_prem (_ $ (Const ("op :", _) $ t $ u)) = Prem ([t], Envir.beta_eta_contract u, true)
| dest_prem (_ $ ((eq as Const ("op =", _)) $ t $ u)) = Prem ([t, u], eq, false)
| dest_prem (_ $ t) =
(case strip_comb t of
(v as Var _, ts) => if v mem args then Prem (ts, v, false) else Sidecond t
| (c as Const (s, _), ts) => (case get_nparms s of
NONE => Sidecond t
| SOME k =>
let val (ts1, ts2) = chop k ts
in Prem (ts2, list_comb (c, ts1), false) end)
| _ => Sidecond t);
fun add_clause intr (clauses, arities) =
let
val _ $ t = Logic.strip_imp_concl intr;
val (Const (name, T), ts) = strip_comb t;
val (ts1, ts2) = chop nparms ts;
val prems = map dest_prem (Logic.strip_imp_prems intr);
val (Ts, Us) = chop nparms (binder_types T)
in
(AList.update op = (name, these (AList.lookup op = clauses name) @
[(ts2, prems)]) clauses,
AList.update op = (name, (map (fn U => (case strip_type U of
(Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
| _ => NONE)) Ts,
length Us)) arities)
end;
val gr' = mk_extra_defs thy defs
(add_edge (hd names, dep)
(new_node (hd names, (NONE, "", "")) gr)) (hd names) names module intrs;
val (extra_modes, extra_arities) = lookup_modes gr' (hd names);
val (clauses, arities) = fold add_clause intrs ([], []);
val modes = constrain modecs
(infer_modes thy extra_modes arities arg_vs clauses);
val _ = print_arities arities;
val _ = print_modes modes;
val (s, gr'') = compile_preds thy defs (hd names) module (terms_vs intrs)
arg_vs (modes @ extra_modes) clauses gr';
in
(map_node (hd names)
(K (SOME (Modes (modes, arities)), module, s)) gr'')
end;
fun find_mode gr dep s u modes is = (case find_first (fn Mode (_, js, _) => is=js)
(modes_of modes u handle Option => []) of
NONE => codegen_error gr dep
("No such mode for " ^ s ^ ": " ^ string_of_mode ([], is))
| mode => mode);
fun mk_ind_call thy defs dep module is_query s T ts names thyname k intrs gr =
let
val (ts1, ts2) = chop k ts;
val u = list_comb (Const (s, T), ts1);
fun mk_mode (Const ("dummy_pattern", _)) ((ts, mode), i) = ((ts, mode), i + 1)
| mk_mode t ((ts, mode), i) = ((ts @ [t], mode @ [i]), i + 1);
val module' = if_library thyname module;
val gr1 = mk_extra_defs thy defs
(mk_ind_def thy defs gr dep names module'
[] (prep_intrs intrs) k) dep names module' [u];
val (modes, _) = lookup_modes gr1 dep;
val (ts', is) =
if is_query then fst (fold mk_mode ts2 (([], []), 1))
else (ts2, 1 upto length (binder_types T) - k);
val mode = find_mode gr1 dep s u modes is;
val _ = if is_query orelse not (needs_random (the mode)) then ()
else warning ("Illegal use of random data generators in " ^ s);
val (in_ps, gr2) = fold_map (invoke_codegen thy defs dep module true) ts' gr1;
val (ps, gr3) = compile_expr thy defs dep module false modes (mode, u) gr2;
in
(Pretty.block (ps @ (if null in_ps then [] else [Pretty.brk 1]) @
separate (Pretty.brk 1) in_ps), gr3)
end;
fun clause_of_eqn eqn =
let
val (t, u) = HOLogic.dest_eq (HOLogic.dest_Trueprop (concl_of eqn));
val (Const (s, T), ts) = strip_comb t;
val (Ts, U) = strip_type T
in
rename_term (Logic.list_implies (prems_of eqn, HOLogic.mk_Trueprop
(list_comb (Const (s ^ "_aux", Ts @ [U] ---> HOLogic.boolT), ts @ [u]))))
end;
fun mk_fun thy defs name eqns dep module module' gr =
case try (get_node gr) name of
NONE =>
let
val clauses = map clause_of_eqn eqns;
val pname = name ^ "_aux";
val arity = length (snd (strip_comb (fst (HOLogic.dest_eq
(HOLogic.dest_Trueprop (concl_of (hd eqns)))))));
val mode = 1 upto arity;
val ((fun_id, mode_id), gr') = gr |>
mk_const_id module' name ||>>
modename module' pname ([], mode);
val vars = map (fn i => str ("x" ^ string_of_int i)) mode;
val s = string_of (Pretty.block
[mk_app false (str ("fun " ^ snd fun_id)) vars, str " =",
Pretty.brk 1, str "DSeq.hd", Pretty.brk 1,
parens (Pretty.block (separate (Pretty.brk 1) (str mode_id ::
vars)))]) ^ ";\n\n";
val gr'' = mk_ind_def thy defs (add_edge (name, dep)
(new_node (name, (NONE, module', s)) gr')) name [pname] module'
[(pname, [([], mode)])] clauses 0;
val (modes, _) = lookup_modes gr'' dep;
val _ = find_mode gr'' dep pname (head_of (HOLogic.dest_Trueprop
(Logic.strip_imp_concl (hd clauses)))) modes mode
in (mk_qual_id module fun_id, gr'') end
| SOME _ =>
(mk_qual_id module (get_const_id gr name), add_edge (name, dep) gr);
(* convert n-tuple to nested pairs *)
fun conv_ntuple fs ts p =
let
val k = length fs;
val xs = map_range (fn i => str ("x" ^ string_of_int i)) (k + 1);
val xs' = map (fn Bound i => nth xs (k - i)) ts;
fun conv xs js =
if js mem fs then
let
val (p, xs') = conv xs (1::js);
val (q, xs'') = conv xs' (2::js)
in (mk_tuple [p, q], xs'') end
else (hd xs, tl xs)
in
if k > 0 then
Pretty.block
[str "DSeq.map (fn", Pretty.brk 1,
mk_tuple xs', str " =>", Pretty.brk 1, fst (conv xs []),
str ")", Pretty.brk 1, parens p]
else p
end;
fun inductive_codegen thy defs dep module brack t gr = (case strip_comb t of
(Const ("Collect", _), [u]) =>
let val (r, Ts, fs) = HOLogic.strip_psplits u
in case strip_comb r of
(Const (s, T), ts) =>
(case (get_clauses thy s, get_assoc_code thy (s, T)) of
(SOME (names, thyname, k, intrs), NONE) =>
let
val (ts1, ts2) = chop k ts;
val ts2' = map
(fn Bound i => Term.dummy_pattern (nth Ts (length Ts - i - 1)) | t => t) ts2;
val (ots, its) = List.partition is_Bound ts2;
val no_loose = forall (fn t => not (loose_bvar (t, 0)))
in
if null (duplicates op = ots) andalso
no_loose ts1 andalso no_loose its
then
let val (call_p, gr') = mk_ind_call thy defs dep module true
s T (ts1 @ ts2') names thyname k intrs gr
in SOME ((if brack then parens else I) (Pretty.block
[str "Set", Pretty.brk 1, str "(DSeq.list_of", Pretty.brk 1, str "(",
conv_ntuple fs ots call_p, str "))"]),
(*this is a very strong assumption about the generated code!*)
gr')
end
else NONE
end
| _ => NONE)
| _ => NONE
end
| (Const (s, T), ts) => (case Symtab.lookup (#eqns (CodegenData.get thy)) s of
NONE => (case (get_clauses thy s, get_assoc_code thy (s, T)) of
(SOME (names, thyname, k, intrs), NONE) =>
if length ts < k then NONE else SOME
(let val (call_p, gr') = mk_ind_call thy defs dep module false
s T (map Term.no_dummy_patterns ts) names thyname k intrs gr
in (mk_funcomp brack "?!"
(length (binder_types T) - length ts) (parens call_p), gr')
end handle TERM _ => mk_ind_call thy defs dep module true
s T ts names thyname k intrs gr )
| _ => NONE)
| SOME eqns =>
let
val (_, thyname) :: _ = eqns;
val (id, gr') = mk_fun thy defs s (preprocess thy (map fst (rev eqns)))
dep module (if_library thyname module) gr;
val (ps, gr'') = fold_map
(invoke_codegen thy defs dep module true) ts gr';
in SOME (mk_app brack (str id) ps, gr'')
end)
| _ => NONE);
val setup =
add_codegen "inductive" inductive_codegen #>
Attrib.setup @{binding code_ind}
(Scan.lift (Scan.option (Args.$$$ "target" |-- Args.colon |-- Args.name) --
Scan.option (Args.$$$ "params" |-- Args.colon |-- OuterParse.nat) >> uncurry add))
"introduction rules for executable predicates";
(**** Quickcheck involving inductive predicates ****)
val test_fn : (int * int * int -> term list option) Unsynchronized.ref =
Unsynchronized.ref (fn _ => NONE);
fun strip_imp p =
let val (q, r) = HOLogic.dest_imp p
in strip_imp r |>> cons q end
handle TERM _ => ([], p);
fun deepen bound f i =
if i > bound then NONE
else (case f i of
NONE => deepen bound f (i + 1)
| SOME x => SOME x);
val depth_bound_value =
Config.declare false "ind_quickcheck_depth" (Config.Int 10);
val depth_bound = Config.int depth_bound_value;
val depth_start_value =
Config.declare false "ind_quickcheck_depth_start" (Config.Int 1);
val depth_start = Config.int depth_start_value;
val random_values_value =
Config.declare false "ind_quickcheck_random" (Config.Int 5);
val random_values = Config.int random_values_value;
val size_offset_value =
Config.declare false "ind_quickcheck_size_offset" (Config.Int 0);
val size_offset = Config.int size_offset_value;
fun test_term ctxt t =
let
val thy = ProofContext.theory_of ctxt;
val (xs, p) = strip_abs t;
val args' = map_index (fn (i, (_, T)) => ("arg" ^ string_of_int i, T)) xs;
val args = map Free args';
val (ps, q) = strip_imp p;
val Ts = map snd xs;
val T = Ts ---> HOLogic.boolT;
val rl = Logic.list_implies
(map (HOLogic.mk_Trueprop o curry subst_bounds (rev args)) ps @
[HOLogic.mk_Trueprop (HOLogic.mk_not (subst_bounds (rev args, q)))],
HOLogic.mk_Trueprop (list_comb (Free ("quickcheckp", T), args)));
val (_, thy') = Inductive.add_inductive_global
{quiet_mode=true, verbose=false, alt_name=Binding.empty, coind=false,
no_elim=true, no_ind=false, skip_mono=false, fork_mono=false}
[((Binding.name "quickcheckp", T), NoSyn)] []
[(Attrib.empty_binding, rl)] [] (Theory.copy thy);
val pred = HOLogic.mk_Trueprop (list_comb
(Const (Sign.intern_const thy' "quickcheckp", T),
map Term.dummy_pattern Ts));
val (code, gr) = setmp_CRITICAL mode ["term_of", "test", "random_ind"]
(generate_code_i thy' [] "Generated") [("testf", pred)];
val s = "structure TestTerm =\nstruct\n\n" ^
cat_lines (map snd code) ^
"\nopen Generated;\n\n" ^ string_of
(Pretty.block [str "val () = InductiveCodegen.test_fn :=",
Pretty.brk 1, str "(fn p =>", Pretty.brk 1,
str "case Seq.pull (testf p) of", Pretty.brk 1,
str "SOME ", mk_tuple [mk_tuple (map (str o fst) args'), str "_"],
str " =>", Pretty.brk 1, str "SOME ",
Pretty.block (str "[" ::
Pretty.commas (map (fn (s, T) => Pretty.block
[mk_term_of gr "Generated" false T, Pretty.brk 1, str s]) args') @
[str "]"]), Pretty.brk 1,
str "| NONE => NONE);"]) ^
"\n\nend;\n";
val _ = ML_Context.eval_in (SOME ctxt) false Position.none s;
val values = Config.get ctxt random_values;
val bound = Config.get ctxt depth_bound;
val start = Config.get ctxt depth_start;
val offset = Config.get ctxt size_offset;
val test_fn' = !test_fn;
fun test k = deepen bound (fn i =>
(priority ("Search depth: " ^ string_of_int i);
test_fn' (i, values, k+offset))) start;
in test end;
val quickcheck_setup =
Attrib.register_config depth_bound_value #>
Attrib.register_config depth_start_value #>
Attrib.register_config random_values_value #>
Attrib.register_config size_offset_value #>
Quickcheck.add_generator ("SML_inductive", test_term);
end;