src/HOL/Complex/ex/Arithmetic_Series_Complex.thy
author wenzelm
Sun, 15 Apr 2007 14:32:04 +0200
changeset 22704 f67607c3e56e
parent 19469 958d2f2dd8d4
permissions -rw-r--r--
added decode_types (from type_infer.ML); decode sorts: internalize here; tuned;

(*  Title:      HOL/Complex/ex/Arithmetic_Series_Complex
    ID:         $Id$
    Author:     Benjamin Porter, 2006
*)


header {* Arithmetic Series for Reals *}

theory Arithmetic_Series_Complex
imports Complex_Main 
begin

lemma arith_series_real:
  "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
  of_nat n * (a + (a + of_nat(n - 1)*d))"
proof -
  have
    "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) =
    of_nat(n) * (a + (a + of_nat(n - 1)*d))"
    by (rule arith_series_general)
  thus ?thesis by simp
qed

end