doc-src/Logics/logics.bbl
author paulson
Fri, 19 Sep 1997 16:11:24 +0200
changeset 3684 f677f0bc1cdf
parent 3488 32f90fe0f3f9
child 5205 602354039306
permissions -rw-r--r--
Deleted the obsolete theorem analz_UN1_synth

\begin{thebibliography}{10}

\bibitem{abrial93}
J.~R. Abrial and G.~Laffitte.
\newblock Towards the mechanization of the proofs of some classical theorems of
  set theory.
\newblock preprint, February 1993.

\bibitem{andrews86}
Peter~B. Andrews.
\newblock {\em An Introduction to Mathematical Logic and Type Theory: To Truth
  Through Proof}.
\newblock Academic Press, 1986.

\bibitem{basin91}
David Basin and Matt Kaufmann.
\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison.
\newblock In {G\'erard} Huet and Gordon Plotkin, editors, {\em Logical
  Frameworks}, pages 89--119. Cambridge University Press, 1991.

\bibitem{boyer86}
Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel, and
  Lawrence Wos.
\newblock Set theory in first-order logic: Clauses for {G\"{o}del's} axioms.
\newblock {\em Journal of Automated Reasoning}, 2(3):287--327, 1986.

\bibitem{camilleri92}
J.~Camilleri and T.~F. Melham.
\newblock Reasoning with inductively defined relations in the {HOL} theorem
  prover.
\newblock Technical Report 265, Computer Laboratory, University of Cambridge,
  August 1992.

\bibitem{church40}
Alonzo Church.
\newblock A formulation of the simple theory of types.
\newblock {\em Journal of Symbolic Logic}, 5:56--68, 1940.

\bibitem{coen92}
Martin~D. Coen.
\newblock {\em Interactive Program Derivation}.
\newblock PhD thesis, University of Cambridge, November 1992.
\newblock Computer Laboratory Technical Report 272.

\bibitem{constable86}
R.~L. Constable et~al.
\newblock {\em Implementing Mathematics with the Nuprl Proof Development
  System}.
\newblock Prentice-Hall, 1986.

\bibitem{davey&priestley}
B.~A. Davey and H.~A. Priestley.
\newblock {\em Introduction to Lattices and Order}.
\newblock Cambridge University Press, 1990.

\bibitem{devlin79}
Keith~J. Devlin.
\newblock {\em Fundamentals of Contemporary Set Theory}.
\newblock Springer, 1979.

\bibitem{dummett}
Michael Dummett.
\newblock {\em Elements of Intuitionism}.
\newblock Oxford University Press, 1977.

\bibitem{dyckhoff}
Roy Dyckhoff.
\newblock Contraction-free sequent calculi for intuitionistic logic.
\newblock {\em Journal of Symbolic Logic}, 57(3):795--807, 1992.

\bibitem{felty91a}
Amy Felty.
\newblock A logic program for transforming sequent proofs to natural deduction
  proofs.
\newblock In Peter Schroeder-Heister, editor, {\em Extensions of Logic
  Programming}, LNAI 475, pages 157--178. Springer, 1991.

\bibitem{frost93}
Jacob Frost.
\newblock A case study of co-induction in {Isabelle HOL}.
\newblock Technical Report 308, Computer Laboratory, University of Cambridge,
  August 1993.

\bibitem{gallier86}
J.~H. Gallier.
\newblock {\em Logic for Computer Science: Foundations of Automatic Theorem
  Proving}.
\newblock Harper \& Row, 1986.

\bibitem{mgordon-hol}
M.~J.~C. Gordon and T.~F. Melham.
\newblock {\em Introduction to {HOL}: A Theorem Proving Environment for Higher
  Order Logic}.
\newblock Cambridge University Press, 1993.

\bibitem{halmos60}
Paul~R. Halmos.
\newblock {\em Naive Set Theory}.
\newblock Van Nostrand, 1960.

\bibitem{huet78}
G.~P. Huet and B.~Lang.
\newblock Proving and applying program transformations expressed with
  second-order patterns.
\newblock {\em Acta Informatica}, 11:31--55, 1978.

\bibitem{kunen80}
Kenneth Kunen.
\newblock {\em Set Theory: An Introduction to Independence Proofs}.
\newblock North-Holland, 1980.

\bibitem{alf}
Lena Magnusson and Bengt {Nordstr\"{o}m}.
\newblock The {ALF} proof editor and its proof engine.
\newblock In Henk Barendregt and Tobias Nipkow, editors, {\em Types for Proofs
  and Programs: International Workshop {TYPES '93}}, LNCS 806, pages 213--237.
  Springer, published 1994.

\bibitem{mw81}
Zohar Manna and Richard Waldinger.
\newblock Deductive synthesis of the unification algorithm.
\newblock {\em Science of Computer Programming}, 1(1):5--48, 1981.

\bibitem{martinlof84}
Per Martin-L\"of.
\newblock {\em Intuitionistic type theory}.
\newblock Bibliopolis, 1984.

\bibitem{milner78}
Robin Milner.
\newblock A theory of type polymorphism in programming.
\newblock {\em Journal of Computer and System Sciences}, 17:348--375, 1978.

\bibitem{milner-coind}
Robin Milner and Mads Tofte.
\newblock Co-induction in relational semantics.
\newblock {\em Theoretical Computer Science}, 87:209--220, 1991.

\bibitem{nazareth-nipkow}
Dieter Nazareth and Tobias Nipkow.
\newblock Formal verification of algorithm {W}: The monomorphic case.
\newblock In von Wright et~al. \cite{tphols96}, pages 331--345.

\bibitem{Nipkow-CR}
Tobias Nipkow.
\newblock More {Church-Rosser} proofs (in {Isabelle/HOL}).
\newblock In Michael McRobbie and John~K. Slaney, editors, {\em Automated
  Deduction --- {CADE}-13 International Conference}, LNAI 1104, pages 733--747.
  Springer, 1996.

\bibitem{nipkow-IMP}
Tobias Nipkow.
\newblock Winskel is (almost) right: Towards a mechanized semantics textbook.
\newblock In V.~Chandru and V.~Vinay, editors, {\em Foundations of Software
  Technology and Theoretical Computer Science}, volume 1180 of {\em LNCS},
  pages 180--192. Springer, 1996.

\bibitem{noel}
Philippe No{\"e}l.
\newblock Experimenting with {Isabelle} in {ZF} set theory.
\newblock {\em Journal of Automated Reasoning}, 10(1):15--58, 1993.

\bibitem{nordstrom90}
Bengt {Nordstr\"om}, Kent Petersson, and Jan Smith.
\newblock {\em Programming in {Martin-L\"of}'s Type Theory. An Introduction}.
\newblock Oxford University Press, 1990.

\bibitem{paulin92}
Christine Paulin-Mohring.
\newblock Inductive definitions in the system {Coq}: Rules and properties.
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon,
  December 1992.

\bibitem{paulson85}
Lawrence~C. Paulson.
\newblock Verifying the unification algorithm in {LCF}.
\newblock {\em Science of Computer Programming}, 5:143--170, 1985.

\bibitem{paulson87}
Lawrence~C. Paulson.
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF}.
\newblock Cambridge University Press, 1987.

\bibitem{paulson-set-I}
Lawrence~C. Paulson.
\newblock Set theory for verification: {I}. {From} foundations to functions.
\newblock {\em Journal of Automated Reasoning}, 11(3):353--389, 1993.

\bibitem{paulson-CADE}
Lawrence~C. Paulson.
\newblock A fixedpoint approach to implementing (co)inductive definitions.
\newblock In Alan Bundy, editor, {\em Automated Deduction --- {CADE}-12
  International Conference}, LNAI 814, pages 148--161. Springer, 1994.

\bibitem{paulson-set-II}
Lawrence~C. Paulson.
\newblock Set theory for verification: {II}. {Induction} and recursion.
\newblock {\em Journal of Automated Reasoning}, 15(2):167--215, 1995.

\bibitem{paulson-ns}
Lawrence~C. Paulson.
\newblock Mechanized proofs of security protocols: {Needham-Schroeder} with
  public keys.
\newblock Technical Report 413, Computer Laboratory, University of Cambridge,
  January 1997.

\bibitem{paulson-coind}
Lawrence~C. Paulson.
\newblock Mechanizing coinduction and corecursion in higher-order logic.
\newblock {\em Journal of Logic and Computation}, 7(2):175--204, March 1997.

\bibitem{paulson-security}
Lawrence~C. Paulson.
\newblock Proving properties of security protocols by induction.
\newblock In {\em 10th Computer Security Foundations Workshop}, pages 70--83.
  IEEE Computer Society Press, 1997.

\bibitem{paulson-COLOG}
Lawrence~C. Paulson.
\newblock A formulation of the simple theory of types (for {Isabelle}).
\newblock In P.~Martin-L\"of and G.~Mints, editors, {\em COLOG-88:
  International Conference on Computer Logic}, LNCS 417, pages 246--274,
  Tallinn, Published 1990. Estonian Academy of Sciences, Springer.

\bibitem{paulson-final}
Lawrence~C. Paulson.
\newblock A concrete final coalgebra theorem for {ZF} set theory.
\newblock In Peter Dybjer, Bengt Nordstr{\"om}, and Jan Smith, editors, {\em
  Types for Proofs and Programs: International Workshop {TYPES '94}}, LNCS 996,
  pages 120--139. Springer, published 1995.

\bibitem{pelletier86}
F.~J. Pelletier.
\newblock Seventy-five problems for testing automatic theorem provers.
\newblock {\em Journal of Automated Reasoning}, 2:191--216, 1986.
\newblock Errata, JAR 4 (1988), 235--236 and JAR 18 (1997), 135.

\bibitem{plaisted90}
David~A. Plaisted.
\newblock A sequent-style model elimination strategy and a positive refinement.
\newblock {\em Journal of Automated Reasoning}, 6(4):389--402, 1990.

\bibitem{quaife92}
Art Quaife.
\newblock Automated deduction in {von Neumann-Bernays-G\"{o}del} set theory.
\newblock {\em Journal of Automated Reasoning}, 8(1):91--147, 1992.

\bibitem{slind-tfl}
Konrad Slind.
\newblock Function definition in higher-order logic.
\newblock In von Wright et~al. \cite{tphols96}.

\bibitem{suppes72}
Patrick Suppes.
\newblock {\em Axiomatic Set Theory}.
\newblock Dover, 1972.

\bibitem{takeuti87}
G.~Takeuti.
\newblock {\em Proof Theory}.
\newblock North-Holland, 2nd edition, 1987.

\bibitem{thompson91}
Simon Thompson.
\newblock {\em Type Theory and Functional Programming}.
\newblock Addison-Wesley, 1991.

\bibitem{tphols96}
J.~von Wright, J.~Grundy, and J.~Harrison, editors.
\newblock {\em Theorem Proving in Higher Order Logics: {TPHOLs} '96}, LNCS
  1125, 1996.

\bibitem{principia}
A.~N. Whitehead and B.~Russell.
\newblock {\em Principia Mathematica}.
\newblock Cambridge University Press, 1962.
\newblock Paperback edition to *56, abridged from the 2nd edition (1927).

\bibitem{winskel93}
Glynn Winskel.
\newblock {\em The Formal Semantics of Programming Languages}.
\newblock MIT Press, 1993.

\end{thebibliography}