clasrified classpath: add in front in accordance to librarypath (cf. b7cd80330a16), for slightly more robustness;
theory IntArith imports Bin
uses ("int_arith.ML")
begin
(** To simplify inequalities involving integer negation and literals,
such as -x = #3
**)
lemmas [simp] =
zminus_equation [where y = "integ_of(w)", standard]
equation_zminus [where x = "integ_of(w)", standard]
lemmas [iff] =
zminus_zless [where y = "integ_of(w)", standard]
zless_zminus [where x = "integ_of(w)", standard]
lemmas [iff] =
zminus_zle [where y = "integ_of(w)", standard]
zle_zminus [where x = "integ_of(w)", standard]
lemmas [simp] =
Let_def [where s = "integ_of(w)", standard]
(*** Simprocs for numeric literals ***)
(** Combining of literal coefficients in sums of products **)
lemma zless_iff_zdiff_zless_0: "(x $< y) <-> (x$-y $< #0)"
by (simp add: zcompare_rls)
lemma eq_iff_zdiff_eq_0: "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)"
by (simp add: zcompare_rls)
lemma zle_iff_zdiff_zle_0: "(x $<= y) <-> (x$-y $<= #0)"
by (simp add: zcompare_rls)
(** For combine_numerals **)
lemma left_zadd_zmult_distrib: "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"
by (simp add: zadd_zmult_distrib zadd_ac)
(** For cancel_numerals **)
lemmas rel_iff_rel_0_rls =
zless_iff_zdiff_zless_0 [where y = "u $+ v", standard]
eq_iff_zdiff_eq_0 [where y = "u $+ v", standard]
zle_iff_zdiff_zle_0 [where y = "u $+ v", standard]
zless_iff_zdiff_zless_0 [where y = n]
eq_iff_zdiff_eq_0 [where y = n]
zle_iff_zdiff_zle_0 [where y = n]
lemma eq_add_iff1: "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))"
apply (simp add: zdiff_def zadd_zmult_distrib)
apply (simp add: zcompare_rls)
apply (simp add: zadd_ac)
done
lemma eq_add_iff2: "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)"
apply (simp add: zdiff_def zadd_zmult_distrib)
apply (simp add: zcompare_rls)
apply (simp add: zadd_ac)
done
lemma less_add_iff1: "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)"
apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
done
lemma less_add_iff2: "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)"
apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
done
lemma le_add_iff1: "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)"
apply (simp add: zdiff_def zadd_zmult_distrib)
apply (simp add: zcompare_rls)
apply (simp add: zadd_ac)
done
lemma le_add_iff2: "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)"
apply (simp add: zdiff_def zadd_zmult_distrib)
apply (simp add: zcompare_rls)
apply (simp add: zadd_ac)
done
use "int_arith.ML"
end