src/HOL/NanoJava/OpSem.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Mon, 26 Apr 2010 15:14:14 +0200
changeset 36352 f71978e47cd5
parent 32960 69916a850301
child 54863 82acc20ded73
permissions -rw-r--r--
add bounded_lattice_bot and bounded_lattice_top type classes

(*  Title:      HOL/NanoJava/OpSem.thy
    Author:     David von Oheimb
    Copyright   2001 Technische Universitaet Muenchen
*)

header "Operational Evaluation Semantics"

theory OpSem imports State begin

inductive
  exec :: "[state,stmt,    nat,state] => bool" ("_ -_-_\<rightarrow> _"  [98,90,   65,98] 89)
  and eval :: "[state,expr,val,nat,state] => bool" ("_ -_\<succ>_-_\<rightarrow> _"[98,95,99,65,98] 89)
where
  Skip: "   s -Skip-n\<rightarrow> s"

| Comp: "[| s0 -c1-n\<rightarrow> s1; s1 -c2-n\<rightarrow> s2 |] ==>
            s0 -c1;; c2-n\<rightarrow> s2"

| Cond: "[| s0 -e\<succ>v-n\<rightarrow> s1; s1 -(if v\<noteq>Null then c1 else c2)-n\<rightarrow> s2 |] ==>
            s0 -If(e) c1 Else c2-n\<rightarrow> s2"

| LoopF:"   s0<x> = Null ==>
            s0 -While(x) c-n\<rightarrow> s0"
| LoopT:"[| s0<x> \<noteq> Null; s0 -c-n\<rightarrow> s1; s1 -While(x) c-n\<rightarrow> s2 |] ==>
            s0 -While(x) c-n\<rightarrow> s2"

| LAcc: "   s -LAcc x\<succ>s<x>-n\<rightarrow> s"

| LAss: "   s -e\<succ>v-n\<rightarrow> s' ==>
            s -x:==e-n\<rightarrow> lupd(x\<mapsto>v) s'"

| FAcc: "   s -e\<succ>Addr a-n\<rightarrow> s' ==>
            s -e..f\<succ>get_field s' a f-n\<rightarrow> s'"

| FAss: "[| s0 -e1\<succ>Addr a-n\<rightarrow> s1;  s1 -e2\<succ>v-n\<rightarrow> s2 |] ==>
            s0 -e1..f:==e2-n\<rightarrow> upd_obj a f v s2"

| NewC: "   new_Addr s = Addr a ==>
            s -new C\<succ>Addr a-n\<rightarrow> new_obj a C s"

| Cast: "[| s -e\<succ>v-n\<rightarrow> s';
            case v of Null => True | Addr a => obj_class s' a \<preceq>C C |] ==>
            s -Cast C e\<succ>v-n\<rightarrow> s'"

| Call: "[| s0 -e1\<succ>a-n\<rightarrow> s1; s1 -e2\<succ>p-n\<rightarrow> s2; 
            lupd(This\<mapsto>a)(lupd(Par\<mapsto>p)(del_locs s2)) -Meth (C,m)-n\<rightarrow> s3
     |] ==> s0 -{C}e1..m(e2)\<succ>s3<Res>-n\<rightarrow> set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D\<preceq>C C;
            init_locs D m s -Impl (D,m)-n\<rightarrow> s' |] ==>
            s -Meth (C,m)-n\<rightarrow> s'"

| Impl: "   s -body Cm-    n\<rightarrow> s' ==>
            s -Impl Cm-Suc n\<rightarrow> s'"


inductive_cases exec_elim_cases':
                                  "s -Skip            -n\<rightarrow> t"
                                  "s -c1;; c2         -n\<rightarrow> t"
                                  "s -If(e) c1 Else c2-n\<rightarrow> t"
                                  "s -While(x) c      -n\<rightarrow> t"
                                  "s -x:==e           -n\<rightarrow> t"
                                  "s -e1..f:==e2      -n\<rightarrow> t"
inductive_cases Meth_elim_cases:  "s -Meth Cm         -n\<rightarrow> t"
inductive_cases Impl_elim_cases:  "s -Impl Cm         -n\<rightarrow> t"
lemmas exec_elim_cases = exec_elim_cases' Meth_elim_cases Impl_elim_cases
inductive_cases eval_elim_cases:
                                  "s -new C         \<succ>v-n\<rightarrow> t"
                                  "s -Cast C e      \<succ>v-n\<rightarrow> t"
                                  "s -LAcc x        \<succ>v-n\<rightarrow> t"
                                  "s -e..f          \<succ>v-n\<rightarrow> t"
                                  "s -{C}e1..m(e2)  \<succ>v-n\<rightarrow> t"

lemma exec_eval_mono [rule_format]: 
  "(s -c  -n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -c  -m\<rightarrow> t)) \<and>
   (s -e\<succ>v-n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -e\<succ>v-m\<rightarrow> t))"
apply (rule exec_eval.induct)
prefer 14 (* Impl *)
apply clarify
apply (rename_tac n)
apply (case_tac n)
apply (blast intro:exec_eval.intros)+
done
lemmas exec_mono = exec_eval_mono [THEN conjunct1, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: "\<lbrakk>s1 -c1-    n1   \<rightarrow> t1 ; s2 -c2-       n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> 
                       s1 -c1-max n1 n2\<rightarrow> t1 \<and> s2 -c2-max n1 n2\<rightarrow> t2"
by (fast intro: exec_mono le_maxI1 le_maxI2)

lemma eval_exec_max: "\<lbrakk>s1 -c-    n1   \<rightarrow> t1 ; s2 -e\<succ>v-       n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> 
                       s1 -c-max n1 n2\<rightarrow> t1 \<and> s2 -e\<succ>v-max n1 n2\<rightarrow> t2"
by (fast intro: eval_mono exec_mono le_maxI1 le_maxI2)

lemma eval_eval_max: "\<lbrakk>s1 -e1\<succ>v1-    n1   \<rightarrow> t1 ; s2 -e2\<succ>v2-       n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> 
                       s1 -e1\<succ>v1-max n1 n2\<rightarrow> t1 \<and> s2 -e2\<succ>v2-max n1 n2\<rightarrow> t2"
by (fast intro: eval_mono le_maxI1 le_maxI2)

lemma eval_eval_exec_max: 
 "\<lbrakk>s1 -e1\<succ>v1-n1\<rightarrow> t1; s2 -e2\<succ>v2-n2\<rightarrow> t2; s3 -c-n3\<rightarrow> t3\<rbrakk> \<Longrightarrow> 
   s1 -e1\<succ>v1-max (max n1 n2) n3\<rightarrow> t1 \<and> 
   s2 -e2\<succ>v2-max (max n1 n2) n3\<rightarrow> t2 \<and> 
   s3 -c    -max (max n1 n2) n3\<rightarrow> t3"
apply (drule (1) eval_eval_max, erule thin_rl)
by (fast intro: exec_mono eval_mono le_maxI1 le_maxI2)

lemma Impl_body_eq: "(\<lambda>t. \<exists>n. Z -Impl M-n\<rightarrow> t) = (\<lambda>t. \<exists>n. Z -body M-n\<rightarrow> t)"
apply (rule ext)
apply (fast elim: exec_elim_cases intro: exec_eval.Impl)
done

end