(* Title: HOL/Prolog/Type.thy
Author: David von Oheimb (based on a lecture on Lambda Prolog by Nadathur)
*)
header {* Type inference *}
theory Type
imports Func
begin
typedecl ty
consts
bool :: ty
nat :: ty
arrow :: "ty => ty => ty" (infixr "->" 20)
typeof :: "[tm, ty] => bool"
anyterm :: tm
axioms common_typeof: "
typeof (app M N) B :- typeof M (A -> B) & typeof N A..
typeof (cond C L R) A :- typeof C bool & typeof L A & typeof R A..
typeof (fix F) A :- (!x. typeof x A => typeof (F x) A)..
typeof true bool..
typeof false bool..
typeof (M and N) bool :- typeof M bool & typeof N bool..
typeof (M eq N) bool :- typeof M T & typeof N T ..
typeof Z nat..
typeof (S N) nat :- typeof N nat..
typeof (M + N) nat :- typeof M nat & typeof N nat..
typeof (M - N) nat :- typeof M nat & typeof N nat..
typeof (M * N) nat :- typeof M nat & typeof N nat"
axioms good_typeof: "
typeof (abs Bo) (A -> B) :- (!x. typeof x A => typeof (Bo x) B)"
axioms bad1_typeof: "
typeof (abs Bo) (A -> B) :- (typeof varterm A => typeof (Bo varterm) B)"
axioms bad2_typeof: "
typeof (abs Bo) (A -> B) :- (typeof anyterm A => typeof (Bo anyterm) B)"
lemmas prog_Type = prog_Func good_typeof common_typeof
schematic_lemma "typeof (abs(%n. abs(%m. abs(%p. p and (n eq m))))) ?T"
apply (prolog prog_Type)
done
schematic_lemma "typeof (fix (%x. x)) ?T"
apply (prolog prog_Type)
done
schematic_lemma "typeof (fix (%fact. abs(%n. (app fact (n - Z))))) ?T"
apply (prolog prog_Type)
done
schematic_lemma "typeof (fix (%fact. abs(%n. cond (n eq Z) (S Z)
(n * (app fact (n - (S Z))))))) ?T"
apply (prolog prog_Type)
done
schematic_lemma "typeof (abs(%v. Z)) ?T" (*correct only solution (?A1 -> nat) *)
apply (prolog prog_Type)
done
schematic_lemma "typeof (abs(%v. Z)) ?T"
apply (prolog bad1_typeof common_typeof) (* 1st result ok*)
done
schematic_lemma "typeof (abs(%v. Z)) ?T"
apply (prolog bad1_typeof common_typeof)
back (* 2nd result (?A1 -> ?A1) wrong *)
done
schematic_lemma "typeof (abs(%v. abs(%v. app v v))) ?T"
apply (prolog prog_Type)? (*correctly fails*)
oops
schematic_lemma "typeof (abs(%v. abs(%v. app v v))) ?T"
apply (prolog bad2_typeof common_typeof) (* wrong result ((?A3 -> ?B3) -> ?A3 -> ?B3)*)
done
end