src/HOL/IMP/Star.thy
author wenzelm
Mon, 27 Feb 2012 16:56:25 +0100
changeset 46711 f745bcc4a1e5
parent 45265 521508e85c0d
child 50054 6da283e4497b
permissions -rw-r--r--
more explicit Long_Name operations (NB: analyzing qualifiers is inherently fragile);

theory Star imports Main
begin

inductive
  star :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
for r where
refl:  "star r x x" |
step:  "r x y \<Longrightarrow> star r y z \<Longrightarrow> star r x z"

hide_fact (open) refl step  --"names too generic"

lemma star_trans:
  "star r x y \<Longrightarrow> star r y z \<Longrightarrow> star r x z"
proof(induction rule: star.induct)
  case refl thus ?case .
next
  case step thus ?case by (metis star.step)
qed

lemmas star_induct = star.induct[of "r:: 'a*'b \<Rightarrow> 'a*'b \<Rightarrow> bool", split_format(complete)]

declare star.refl[simp,intro]

lemma star_step1[simp, intro]: "r x y \<Longrightarrow> star r x y"
by(metis star.refl star.step)

code_pred star .

end