theory Further
imports Setup
begin
section {* Further issues \label{sec:further} *}
subsection {* Modules namespace *}
text {*
When invoking the @{command export_code} command it is possible to leave
out the @{keyword "module_name"} part; then code is distributed over
different modules, where the module name space roughly is induced
by the Isabelle theory name space.
Then sometimes the awkward situation occurs that dependencies between
definitions introduce cyclic dependencies between modules, which in the
@{text Haskell} world leaves you to the mercy of the @{text Haskell} implementation
you are using, while for @{text SML}/@{text OCaml} code generation is not possible.
A solution is to declare module names explicitly.
Let use assume the three cyclically dependent
modules are named \emph{A}, \emph{B} and \emph{C}.
Then, by stating
*}
code_modulename %quote SML
A ABC
B ABC
C ABC
text {*\noindent
we explicitly map all those modules on \emph{ABC},
resulting in an ad-hoc merge of this three modules
at serialisation time.
*}
subsection {* Locales and interpretation *}
text {*
A technical issue comes to surface when generating code from
specifications stemming from locale interpretation.
Let us assume a locale specifying a power operation
on arbitrary types:
*}
locale %quote power =
fixes power :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
assumes power_commute: "power x \<circ> power y = power y \<circ> power x"
begin
text {*
\noindent Inside that locale we can lift @{text power} to exponent lists
by means of specification relative to that locale:
*}
primrec %quote powers :: "'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
"powers [] = id"
| "powers (x # xs) = power x \<circ> powers xs"
lemma %quote powers_append:
"powers (xs @ ys) = powers xs \<circ> powers ys"
by (induct xs) simp_all
lemma %quote powers_power:
"powers xs \<circ> power x = power x \<circ> powers xs"
by (induct xs)
(simp_all del: o_apply id_apply add: o_assoc [symmetric],
simp del: o_apply add: o_assoc power_commute)
lemma %quote powers_rev:
"powers (rev xs) = powers xs"
by (induct xs) (simp_all add: powers_append powers_power)
end %quote
text {*
After an interpretation of this locale (say, @{command_def
interpretation} @{text "fun_power:"} @{term [source] "power (\<lambda>n (f ::
'a \<Rightarrow> 'a). f ^^ n)"}), one would expect to have a constant @{text
"fun_power.powers :: nat list \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"} for which code
can be generated. But this not the case: internally, the term
@{text "fun_power.powers"} is an abbreviation for the foundational
term @{term [source] "power.powers (\<lambda>n (f :: 'a \<Rightarrow> 'a). f ^^ n)"}
(see \cite{isabelle-locale} for the details behind).
Fortunately, with minor effort the desired behaviour can be achieved.
First, a dedicated definition of the constant on which the local @{text "powers"}
after interpretation is supposed to be mapped on:
*}
definition %quote funpows :: "nat list \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
[code del]: "funpows = power.powers (\<lambda>n f. f ^^ n)"
text {*
\noindent In general, the pattern is @{text "c = t"} where @{text c} is
the name of the future constant and @{text t} the foundational term
corresponding to the local constant after interpretation.
The interpretation itself is enriched with an equation @{text "t = c"}:
*}
interpretation %quote fun_power: power "\<lambda>n (f :: 'a \<Rightarrow> 'a). f ^^ n" where
"power.powers (\<lambda>n f. f ^^ n) = funpows"
by unfold_locales
(simp_all add: fun_eq_iff funpow_mult mult_commute funpows_def)
text {*
\noindent This additional equation is trivially proved by the definition
itself.
After this setup procedure, code generation can continue as usual:
*}
text %quote %typewriter {*
@{code_stmts funpows (consts) Nat.funpow funpows (Haskell)}
*}
subsection {* Imperative data structures *}
text {*
If you consider imperative data structures as inevitable for a
specific application, you should consider \emph{Imperative
Functional Programming with Isabelle/HOL}
\cite{bulwahn-et-al:2008:imperative}; the framework described there
is available in session @{text Imperative_HOL}.
*}
subsection {* ML system interfaces \label{sec:ml} *}
text {*
Since the code generator framework not only aims to provide a nice
Isar interface but also to form a base for code-generation-based
applications, here a short description of the most fundamental ML
interfaces.
*}
subsubsection {* Managing executable content *}
text %mlref {*
\begin{mldecls}
@{index_ML Code.read_const: "theory -> string -> string"} \\
@{index_ML Code.add_eqn: "thm -> theory -> theory"} \\
@{index_ML Code.del_eqn: "thm -> theory -> theory"} \\
@{index_ML Code_Preproc.map_pre: "(simpset -> simpset) -> theory -> theory"} \\
@{index_ML Code_Preproc.map_post: "(simpset -> simpset) -> theory -> theory"} \\
@{index_ML Code_Preproc.add_functrans: "
string * (theory -> (thm * bool) list -> (thm * bool) list option)
-> theory -> theory"} \\
@{index_ML Code_Preproc.del_functrans: "string -> theory -> theory"} \\
@{index_ML Code.add_datatype: "(string * typ) list -> theory -> theory"} \\
@{index_ML Code.get_type: "theory -> string
-> (string * sort) list * ((string * string list) * typ list) list"} \\
@{index_ML Code.get_type_of_constr_or_abstr: "theory -> string -> (string * bool) option"}
\end{mldecls}
\begin{description}
\item @{ML Code.read_const}~@{text thy}~@{text s}
reads a constant as a concrete term expression @{text s}.
\item @{ML Code.add_eqn}~@{text "thm"}~@{text "thy"} adds function
theorem @{text "thm"} to executable content.
\item @{ML Code.del_eqn}~@{text "thm"}~@{text "thy"} removes function
theorem @{text "thm"} from executable content, if present.
\item @{ML Code_Preproc.map_pre}~@{text "f"}~@{text "thy"} changes
the preprocessor simpset.
\item @{ML Code_Preproc.add_functrans}~@{text "(name, f)"}~@{text "thy"} adds
function transformer @{text f} (named @{text name}) to executable content;
@{text f} is a transformer of the code equations belonging
to a certain function definition, depending on the
current theory context. Returning @{text NONE} indicates that no
transformation took place; otherwise, the whole process will be iterated
with the new code equations.
\item @{ML Code_Preproc.del_functrans}~@{text "name"}~@{text "thy"} removes
function transformer named @{text name} from executable content.
\item @{ML Code.add_datatype}~@{text cs}~@{text thy} adds
a datatype to executable content, with generation
set @{text cs}.
\item @{ML Code.get_type_of_constr_or_abstr}~@{text "thy"}~@{text "const"}
returns type constructor corresponding to
constructor @{text const}; returns @{text NONE}
if @{text const} is no constructor.
\end{description}
*}
subsubsection {* Data depending on the theory's executable content *}
text {*
Implementing code generator applications on top
of the framework set out so far usually not only
involves using those primitive interfaces
but also storing code-dependent data and various
other things.
Due to incrementality of code generation, changes in the
theory's executable content have to be propagated in a
certain fashion. Additionally, such changes may occur
not only during theory extension but also during theory
merge, which is a little bit nasty from an implementation
point of view. The framework provides a solution
to this technical challenge by providing a functorial
data slot @{ML_functor Code_Data}; on instantiation
of this functor, the following types and operations
are required:
\medskip
\begin{tabular}{l}
@{text "type T"} \\
@{text "val empty: T"} \\
\end{tabular}
\begin{description}
\item @{text T} the type of data to store.
\item @{text empty} initial (empty) data.
\end{description}
\noindent An instance of @{ML_functor Code_Data} provides the following
interface:
\medskip
\begin{tabular}{l}
@{text "change: theory \<rightarrow> (T \<rightarrow> T) \<rightarrow> T"} \\
@{text "change_yield: theory \<rightarrow> (T \<rightarrow> 'a * T) \<rightarrow> 'a * T"}
\end{tabular}
\begin{description}
\item @{text change} update of current data (cached!)
by giving a continuation.
\item @{text change_yield} update with side result.
\end{description}
*}
end