src/HOL/Prolog/Func.thy
author wenzelm
Sat, 13 May 2006 02:51:48 +0200
changeset 19635 f7aa7d174343
parent 17311 5b1d47d920ce
child 20713 823967ef47f1
permissions -rw-r--r--
unchecked definitions;

(*  Title:    HOL/Prolog/Func.thy
    ID:       $Id$
    Author:   David von Oheimb (based on a lecture on Lambda Prolog by Nadathur)
*)

header {* Untyped functional language, with call by value semantics *}

theory Func
imports HOHH
begin

typedecl tm

consts
  abs     :: "(tm => tm) => tm"
  app     :: "tm => tm => tm"

  cond    :: "tm => tm => tm => tm"
  "fix"   :: "(tm => tm) => tm"

  true    :: tm
  false   :: tm
  "and"   :: "tm => tm => tm"       (infixr 999)
  "eq"    :: "tm => tm => tm"       (infixr 999)

  "0"     :: tm                   ("Z")
  S       :: "tm => tm"
(*
        "++", "--",
        "**"    :: tm => tm => tm       (infixr 999)
*)
        eval    :: "[tm, tm] => bool"

instance tm :: plus ..
instance tm :: minus ..
instance tm :: times ..

axioms   eval: "

eval (abs RR) (abs RR)..
eval (app F X) V :- eval F (abs R) & eval X U & eval (R U) V..

eval (cond P L1 R1) D1 :- eval P true  & eval L1 D1..
eval (cond P L2 R2) D2 :- eval P false & eval R2 D2..
eval (fix G) W   :- eval (G (fix G)) W..

eval true  true ..
eval false false..
eval (P and Q) true  :- eval P true  & eval Q true ..
eval (P and Q) false :- eval P false | eval Q false..
eval (A1 eq B1) true  :- eval A1 C1 & eval B1 C1..
eval (A2 eq B2) false :- True..

eval Z Z..
eval (S N) (S M) :- eval N M..
eval ( Z    + M) K     :- eval      M  K..
eval ((S N) + M) (S K) :- eval (N + M) K..
eval (N     - Z) K     :- eval  N      K..
eval ((S N) - (S M)) K :- eval (N- M)  K..
eval ( Z    * M) Z..
eval ((S N) * M) K :- eval (N * M) L & eval (L + M) K"

ML {* use_legacy_bindings (the_context ()) *}

end